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The primary aim of this study was to determine the effectiveness of array-based 

technology for detecting and quantifying the presence of mosaicism. This aim was 

achieved by studying individuals having mosaicism for Down syndrome. SNP arrays 

were performed on 13 samples from individuals with mosaicism for trisomy 21, 13 

samples from individuals with normal chromosome 21complements (negative controls) 

and 5 samples from individuals with full or partial trisomy 21 (positive controls). In 

addition, BAC arrays were processed on 6 samples from individuals with mosaicism for 

trisomy 21, 3 negative controls and 1 positive control. These studies have shown that 
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array-based technology is effective for detecting mosaicism that is present in 20% or 

more cells with the results being consistent for both platforms. We also demonstrated the 

strength of array-based technology to identify previously unrecognized chromosomal 

mosaicism.  

A second aim of this study was to gain insight regarding the effect that trisomy 21 

has on telomere attrition and the frequency of chromosomal instability. This study 

provides the first reported measure of both chromosome-specific telomere lengths and the 

frequency of acquired chromosome abnormalities in trisomic cells and isogenic euploid 

cells obtained from the same individuals. A chromosome-specific telomere length assay 

was performed on lymphocytes obtained from 24 young individuals with mosaicism for 

Down syndrome. While differences in overall telomere signal intensities were observed 

between the euploid and trisomic cells within a person, strikingly similar profiles for 

chromosome-specific telomere intensities were observed between the cell types within a 

person. Analyses were also completed on lymphoblast samples obtained from 8 older 

individuals with mosaicism for Down syndrome, including 5 individuals without 

dementia and 3 individuals with dementia. In the older study subjects, a significant 

inverse correlation was observed between telomere length and the frequency of 

micronuclei, suggesting that telomeric shortening is leading to an increased frequency of 

chromosomal instability, possibly through dicentric chromosome formation. However, 

further studies of more individuals, especially additional analyses of older individuals, 

are needed. These future studies may help to identify genomic regions of interest and 

serve to inform investigators of potential candidate genes in the etiology of dementia. 
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Chapter 1 

 

Introduction 

 

Epidemiology and etiology of Down syndrome 

 

Down syndrome (OMIM90685) is the best recognized and most common 

chromosomal disorder seen in live born individuals, affecting 1/700-1/800 live births 

(Sherman et al., 2007). Down syndrome is caused by a complete or partial triplication of 

chromosome 21. This condition was first described in 1866 by John Langdon Down, but 

the etiology of Down syndrome was not known until 1959, when Lejuene demonstrated 

the presence of 3 copies of chromosome 21 in cells from individuals with Down 

syndrome (Lejuene, 1959). It is known that the extra chromosome 21 originates from 

nondisjunction during gametogenesis. Nondisjunction can occur during meiosis I (MI), 

when the homologous chromosomes pairs fail to properly complete the reduction division 

or during meiosis II (MII) when the chromatids fail to correctly separate. The use of 

DNA polymorphic markers allowed geneticists to determine the parental and meiotic 

origin of the nondisjunctional error that resulted in the presence of the extra chromosome 

21 in people having Down syndrome. In approximately 90% of individuals with Down 

syndrome, nondisjunction occurred in maternal meiosis, with the majority of these 

(~75%) arising during MI. Paternal nondisjunction and mitotic malsegregation are far 
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less prevalent, being seen in approximately 4 to 9% and 3 to 5% of cases, respectively 

(Yoon et al., 1996; Sherman et al., 2007).  

 

Progress has been made to identify associated factors that increase the risk for 

chromosome 21 nondisjunction. By far, advanced maternal age is the most significant 

risk factor (Janerich and Bracken 1986). The birth rate of infants having Down syndrome 

is dramatically increased in women older than 35 years (1.8/1000 births) and older than 

45 years (6.1/1000 births), when compared to the rates seen in 20- 24 years old women 

(0.4/1000 births) (Yoon et al., 1996). This observation, in part, can  be explained by: (1) 

an accumulation of toxic effects/environmental insults/mitochondrial mutations during 

the period of oocyte arrest; (2) a decrease in ovarian reserve/limited oocyte pool; (3) 

hormonal imbalance; (4) impaired meiotic machinery;  (5) altered meiotic 

recombination/instability during chromosome segregation; and/ or (6) accumulation of 

trisomy 21 oocytes due to preferential elimination of disomic oocytes (oocyte mosaicism 

selection model) (Sherman et al., 2007; Hultén et al., 2010).  

 

It is estimated that 95 % of individuals with Down syndrome have full or partial 

trisomy 21. Of the remaining cases, approximately 2-4% are due to translocations 

between chromosome 21 and another chromosome [e.g., t(14;21), t(21;22)] (Pangalos et 

al., 1994; Devlin and Morrison, 2004; Shin et al., 2010). Approximately three fourths of 

these unbalanced translocations are de novo mutations, with one fourth being present as a 

result of malsegregation of a familial translocation (American Academy of Pediatrics, 
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Committee on Genetics, 2001). The remaining proportion of people having Down 

syndrome (1% to 4%) has mosaicism. Mosaicism is a condition in which an individual 

has two or more genetically distinct cell lines that develop from a single zygote 

(Thompson and Thompson, 2004). In the case of mosaicism for Down syndrome, an 

individual has at least 2 populations of cells: one that has trisomy 21 (47,XX,+21 or 

47,XY,+21) and one with euploid cells (46,XX or 46,XY). 

 

Overview of Down syndrome clinical features 

The phenotype of people having Down syndrome, which is thought to result from 

the dosage imbalance of multiple genes, has been associated with more than 80 traits 

(Epstein 1986), including a small brachycephalic head, epicanthal folds, upward slanting 

palpebral fissures, Brushfield spots (speckling of iris), a small nose with a flat nasal 

bridge, small mouth, hypoplasic teeth, small ears, short neck, nuchal skin folds, single 

palmar creases, short metacarpals and phalanges, short fifth finger with clinodactyly, and 

wide spacing between the first and second toes. Besides cognitive impairment, the 

incidences of the most common clinical characteristics reported in people having Down 

syndrome are summarized in Table 1 (Committee on Genetics, American Academy of 

Pediatrics, 2001; Jones KL, 2005). Although individuals with Down syndrome are 

predisposed to develop childhood leukemia, epidemiologic studies revealed that 

individuals with Down syndrome have a lower incidence of developing solid tumors, 

especially breast cancer, when compare to the general population (Hasle et al., 2000). 
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Down syndrome has also been associated with primary gonadal deficiency, which 

contributes to their fertility reduction. Although, a number of females with Down 

syndrome have been reported to produce offspring (approximately 50% having a normal 

chromosomal complement and 50% having Down syndrome) (Sheridan et al., 1989), 

nearly all males with Down syndrome are infertile. Only a few case reports of males with 

non-mosaic Down syndrome have been reported to have offspring. Paternity studies 

completed for these cases confirmed that the men having Down syndrome were the 

biological fathers (Bobrow et al., 1992; Zuhlke et al., 1994; Pradhan et al., 2006). 

Cognitive impairment in people having Down syndrome is variable, ranging from 

mild (IQ: 50-70) to moderate (IQ: 35-50), and occasionally severe (IQ: 20-35) 

(Committee on Genetics, American Academy of Pediatrics, 2001; Jones KL, 2005; Tarek 

2005). The presence of visual and hearing impairments may further limit overall 

cognitive function, and language and psychosocial skill development. In addition, 

unrecognized thyroid dysfunction may compromise cognitive function. The development 

of seizures may also deteriorate cognitive function (Lott and Dierssen, 2010; Chen et al., 

2011). An area of particular compromise for individuals with Down syndrome appears in 

their auditory short-term memory skills, which has been conjectured to cause expressive 

language skill impairment (Chapman and Hesketh, 2001).
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Table 1: Clinical characteristics of individuals with Down syndrome  

 

 

Characteristics Percentage  

Hypotonia 80% 

Congenital heart defects, including endocardial cushion defect or atrioventricular canal 

defect, ventricular septal defect, patent ductus arteriosus, atrial septal defect, mitral valve 

prolapse with or without tricuspid valve prolapse and aortic regurgitation 

40-58% 

Hearing loss, including conductive, mixed, or sensorineural hearing loss 70-90% 

Otitis media  50-70% 

Eye diseases, including  

- Congenital cataracts 

- Acquired cataracts in adults 

- Severe refractive errors (mostly myopia) 

 

15% 

30-60% 

50% 

Obstructive  sleep apnea  50-75% 

Thyroid disease  15% 

Seizures   <9% 

Gastrointestinal tract anomalies, including  

- Duodenal atresia  

- Hirschsprung disease  

 

12% 

<1% 

Spine anomalies, including  

- Incomplete fusion of vertebral arches of lower spine  

- Atlantoaxial instability  

 

37% 

12% 

Hip dislocation 6% 

Increased risk of leukemia and leukemoid reaction <1% 
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Down syndrome: a syndrome of premature aging 

Approximately 75% of concepti with trisomy 21 die prenatally. Approximately 

85% of live born infants survive to age 1 year and 50% are expected to live longer than 

age 50 years (Tarek 2005). Congenital heart disease is the major factor that determines 

early survival. In addition, frequent infections that are presumably due to impaired 

immune responses and leukemia also contribute to high mortality (Chen et al., 2011). 

However, as a result of improvements in medical care, the survival of individuals with 

Down syndrome has markedly increased.  Life expectancy estimates for people with 

Down syndrome have increased from 9 years old in 1929 to 60 years in 2000 (Bittles and 

Glasson, 2004). Age-related disorders in individuals with Down syndrome begin earlier 

than in the general population. Several precocious aging characteristics have been 

reported in 30 to 40 year-old individuals with Down syndrome, including acquired 

cataracts, alopecia, premature graying of hair, age-related hearing loss, skin atrophy, 

hypogonadism, early onset menopause, degenerative vascular disease senile dementia 

and an increased prevalence of Alzheimer disease (Potter, 1991; reviewed in Esbensen 

2010). 

 

How people with Down syndrome age prematurely is not known. The DNA 

damage theory had been proposed to explain precocious aging in Down syndrome. This 

theory, which postulates that aging is a consequence of accumulation of unrepaired DNA 

damage, is supported by the finding of increased sensitivity to the DNA-damaging agents 

and impaired cellular reaction to DNA damage in individuals with Down syndrome 
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(Morawiec et al., 2008).  In addition, DNA damage has been found to be increased in 

individuals with Down syndrome in relation to control individuals (Maluf and Erdtmann, 

2001). An alternative explanation that has been suggested to explain the precocious aging 

of people with Down syndrome focuses on free-radical metabolism. One of the key 

enzymes involved in free-radical metabolism is superoxide dismutase (SOD-1), which is 

encoded by the SOD-1 gene on chromosome 21. This explanation is supported by the 

finding that cells from individuals with Down syndrome have a decreased ability to repair 

oxidative damage to mitochondrial DNA compared to age-matched controls (Druzhyna et 

al., 1998).  

 

 A relationship between the progression of aging and telomere length has been 

shown in chromosomally normal individuals from the general population (Wright and 

Shay, 1995; Fredrich et al., 2000; Stewart and Weinberg, 2006; Mayer, et al., 2006; Guan 

et al., 2007). A telomere is a specialized structure at the end of a chromosome that plays a 

role in ensuring chromosomal integrity. Several observations, both in vitro and in vivo, 

have shown that telomeres act as a mitotic clock; with the shortening of telomeres that 

occur with every cell division eventually causing cellular senescence and cell death 

(Herbert et al., 1999; Sherr and DePinho, 2000; Campisi, et al., 2001). Telomere 

shortening and a concomitant increase in genomic instability have also been described in 

older individuals having Down syndrome (Vaziri et al., 1993; Maluf and Erdtmann, 

2001).  
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Given that individuals with Down syndrome exhibit similar neuropathological 

features to those observed in individuals acquiring Alzheimer disease, it has been 

speculated that the neurodegenerative courses in Alzheimer disease and Down syndrome 

are closely related. Alzheimer disease is the most common form of dementia in the 

elderly. It is characterized by progressive dementia associated with several 

neuropathologic findings, including cerebral cortical atrophy and the accumulation of 

intracellular neurofibrillary tangles harboring hyperphosphorylated tau and extracellular 

β-amyloid plaques (Kimura et al., 2007). In the general population, early-onset 

Alzheimer disease symptoms usually start before age 60 to 65 years and often before age 

55 years, while the prevalence of clinical dementia/Alzheimer disease in individuals with 

Down syndrome present at an earlier age (the fourth and fifth decades of life) (Holland et 

al., 2000). However, neuropathologic characteristics consistent with Alzheimer disease 

have been observed (at autopsy) in the brains of individuals with Down syndrome as 

early as 30 years of age (Mann and Esiri 1989) and in the brains of all individuals with 

Down syndrome over the age of 40 years (Wisniewski et al., 1985). The diagnosis of 

Alzheimer disease in individuals with Down syndrome is complicated by their pre-

existing developmental delay (Brugge et al., 1994). In addition, individuals with Down 

syndrome have limitations in motor, language, communication and intellectual abilities; 

therefore the detection of subtle changes in these functioning areas requires sensitive 

assessment scales. Furthermore, individuals with Down syndrome may also have other 

health problems associated with aging (e.g., hypothyroidism and depression) that may 

mimic or mask the presence of Alzheimer disease (Bush and Beail, 2004). 
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Alzheimer disease is a genetically heterogeneous condition. Most forms of 

familial Alzheimer disease (AD1) are caused by a mutation in the gene encoding the 

amyloid precursor protein (APP; OMIM 104760) on chromosome band 21q21.2 

(http://www.ncbi.nlm.nih.gov/omim/104300). In these patients, the cerebral deposition of 

β-amyloid, the main component of amyloid plaques, has been associated with triplication 

of the APP gene (Hardy, 1992; Mann, 2004). These amyloid plaques are thought to lead 

to neuronal death and subsequently progressive signs and symptoms of Alzhemer disease. 

In addition to the APP gene, other genes on chromosome 21 that may be involved in the 

pathogenesis of Alzheimer disease include, but are not limited to, the superoxide 

dismutase (SOD-1) gene and the dual-specificity tyrosine-(Y)-phosphorylation regulated 

kinase 1A (DYRK1A). It has been speculated that oxidative stress may be relevant to 

neurodegeneration in people with Down syndrome (Percy et al., 1990), as SOD-1 is 

located on chromosome 21q22.1 and the activity of SOD-1 is elevated in their blood cells 

(De la Torre et al., 1996). SOD-1 is an enzyme that converts oxygen radicals to hydrogen 

peroxide and water. In people having Down syndrome SOD-1 activity is increased due to 

triplication of chromosome 21, with this increase being disproportionate to the activity of 

the downstream enzymes responsible for removal of hydrogen peroxide (e.g., glutathione 

peroxidase)(Brooksbank and Balazs, 1984; Dyer and Sinclair, 1998). This imbalance is 

thought to result in accumulations of hydrogen peroxide in the brain, causing neuronal 

damage which, in turn, results in the particularly rapid neurodegeneration with age that is 

similar to that seen in people having Alzheimer disease (De Haan et al., 1997). The 

DYRK1A, which is a candidate gene responsible for learning and memory deficit in 
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individuals with Down syndrome, has recently been demonstrated to be involved in the 

development of Alzheimer disease. The DYRK1A gene was found to be over expressed in 

the brains of individuals with Alzheimer disease with and without Down syndrome. 

Furthermore, an extra copy of the DYRK1 gene has been observed to lead to an increased 

expression and activity of DYRK1 kinase enzyme and has resulted in increased tau 

phosphorylation (Kimura et al., 2007; Liu et al, 2008; Wegiel et al., 2011).  

 

 Another biological factor that has been associated with the development of 

Alzheimer disease status in the general population is telomere attrition. The relationship 

between telomere shortening and Alzheimer disease has also been studied in individuals 

with Down syndrome. Jenkins et al. (2006) observed increased telomere shortening in 

adults with Down syndrome having dementia compared to age-matched individuals with 

Down syndrome who did not have dementia (Jenkins et al., 2006; Jenkins et al., 2008). 

Given that early clinical symptoms of Alzheimer disease can be very difficult to 

recognize, Jenkins et al. (2010) proposed that telomere shortening, especially for 

chromosome 21, may be used as a biomarker for early detection of Alzheimer disease in 

the Down syndrome population and could allow for benefits to be realized from early 

intervention before damage to the central nervous system occurred.  

 

The biological basis for the role of the telomere in Alzheimer disease 

development has been proposed to arise from a decreased efficiency in DNA repair 

processes, leading to the accumulation of mutations which, in turn, result in an increased 
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level of DNA damage. Aviv and Aviv (1998) proposed that erosion of the telomere leads 

to chromosomal instability. At the chromosomal level, telomeric shortening may give rise 

to acentric chromosome fragments which would not be subsequently pulled toward the 

daughter nuclei at the time of nuclear division, being left in the cytoplasm as micronuclei 

(MN)(de Lange, 2005). In addition, MN may originate from whole chromosome lagging 

(reviewed in Fenech, 2007). A strong correlation between chromosomal aberrations and 

MN formation has been shown (Jones, et al., 1994). It has also been shown that MN 

frequency increases with age (Bolognesi, et al., 1999; Bonassi, et al.,2001); toxic 

substance exposure [e.g., lead (Kasuba, et al., 2010) and arsenic (Colognato, et al., 

2007)]; and radiation exposure (Cho, et al., 2009; Banerjee et al., 2008); 

neurodegenerative diseases [e.g., Alzheimer disease (Migliore et al., 1997; Petrozzi et al., 

2002), and Parkinson disease (Petrozzi et al., 2002; Migliore et al., 2002)]; obesity and 

metabolic syndromes (Andreassi et al., 2011); and cancer (Duffaud, et al., 1997; Bonassi 

et al.,2007; Milosević-Djordjević et al., 2010). 

 

One of the methods for studying acquired chromosomal changes is through use of 

the cytokinesis-blocked micronucleus (CBMN) assay, which has been adopted by many 

laboratories. The CBMN assay, which was introduced by Fenech and Morley (1985), is a 

one of the most widely-used methods for measuring the frequency of MN. This cytome 

assay also allows for measuring other cytological structures that are indicative of 

chromosomal damage including nuclear buds (NBUD), which are thought to be a 

biomarker of eliminated amplified DNA and/or DNA repair complexes and 
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nucleoplasmic bridges (NPB), which serve as a biomarker of DNA misrepaired and/or 

telomere end-fusions. Interestingly, an increase in spontaneous MN frequency with age 

has been reported in buccal cells from individuals with Down syndrome (Thomas et al, 

2008; Ferreira et al, 2009)., but there is a paucity of reports of MN frequencies in 

lymphocytes of people having trisomy 21.  

 

Mosaicism for Down syndrome 

The reported incidence of mosaicism for trisomy 21 may represent only a subset 

of individuals having mosaicism. One of the main reasons for this bias is that 

conventional cytogenetic technologies are limited in their ability to detect mosaicism, 

especially for cases having low levels of trisomic cell lines. In addition, the phenotypic 

appearance of individuals with low level mosaicism is often subtle, leading to a lack of 

recognition of the condition based on a physical examination. Therefore, the true 

prevalence of mosaicism for Down syndrome in the general population could be 

underestimated. It has been postulated that whenever a larger number of cells are studied, 

using fluorescent in situ hybridization (FISH) methodologies, trisomy 21 mosaicism may 

be surprisingly common in the general population (Hultén et al., 2010).  

 

Trisomy 21 mosaicism can originate in two ways:  

1) Somatic origin. After fertilization involving euploid gametes, a normal zygote 

with 46 chromosomes undergoes a mitotic nondisjunctional event (or anaphase lag) 

involving a chromosome 21 to result in a cell with 3 copies of chromosome 21.  The cell 
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with three copies of chromosome 21 may continue to proliferate, giving rise to the 

trisomic cell line.  However, the reciprocal daughter cell having only one copy of the 

chromosome is more often at a selective growth disadvantage and usually will not 

continue to reproduce (Gardner & Sutherland, 1996) (Figure 1a).  

2) Meiotic origin. A meiotic error of chromosome 21 occurs during oogenesis or 

spermatogenesis which, following fertilization, results in an abnormal fertilized egg 

having 47 chromosomes (i.e., trisomic 21 zygote). A subsequent mitotic loss of the extra 

copy of chromosome 21 in one or more cells during embryogenesis, through a process 

called trisomy rescue, results in the presence of a normal cell line (Figure 1b).
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1)  

                               

 

Figure 1: Origin of trisomy 21 mosaicism. (a) Somatic origin. After fertilization of euploid gametes, a normal zygote 

with 46 chromosomes undergoes a mitotic nondisjunctional event, resulting in a cell with 3 copies of chromosome 21 

(black) and a cell with single copy of chromosome 21 (gray). The cell with one copy of chromosome 21 tends to have 

proliferative disadvantage, while the cell with 3 copies of chromosome 21 may continue to proliferate and gives rise to 

a mosaic zygote containing trisomy 21 cells and normal cell (white). (b) Meiotic origin. Following fertilization of a 

normal gamete with a gamete containing 2 copies of chromosome 21 due to a meiotic error, a trisomic zygote is 

formed. A subsequent mitotic loss of the extra copy of chromosome 21 in one or more cells occurs during 

embryogenesis, giving rise to the mosaicism.

(b) Meiotic Origin (a) Somatic Origin 
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The clinical manifestations of mosaicism for Down syndrome are highly variable, 

ranging from a phenotype comparable to that of individuals having “complete” trisomy 

21 to a nearly normal phenotype. These phenotypic differences are thought to be due to 

variable numbers of trisomic cells in different people, as well as variation from tissue to 

tissue within a person (Papavassiliou, et al. 2009). The proportion of trisomic cells 

present may be influenced by the viability of trisomic cells in the specific cell lineages. 

Mosaicism originating from a meiotic error or a mitotic error that gives rise to a trisomic 

cell line that is present during early stages of embryogenesis, such as blastulation, may 

lead to generalized mosaicism in which most tissues are affected. An error that occurs at 

a later embryonic stage, such as during gastrulation, in which the 3 major cell lineages 

(i.e., ectoderm, mesoderm and endoderm) are being established, may affect a smaller 

proportion of the cells or result in mosaicism that is confined to a certain tissue(s). The 

type of cells that are affected may also determine the phenotypic outcome. If the genetic 

information on chromosome 21 is essential for the development of the affected tissue(s), 

it could either impair the overall function of that tissue(s) or lead to a selective 

disadvantage of the trisomic cells. Herein, certain mechanisms involved in cell selection 

help prevent the abnormal trisomic cells from reproducing, which in turn minimize or 

eliminate the effects of the genetic imbalances resulting from trisomy for chromosome 

21.  

 

As noted above, individuals having a higher frequency of trisomy 21 cells tend to 

have more clinical traits than those who have lower proportions of trisomic cells 
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(Papavassiliou, et al. 2009). Correlations have also been observed between phenotypic 

findings and level of trisomy 21 cells in different tissues. For example, IQ scores have 

been negatively correlated to the proportion of trisomic buccal cells, while the presence 

of congenital heart disease has been positively correlated to the proportion of trisomic 

lymphocytes (Papavassiliou, et al. 2009). This observation could be explained by the 

underlying embryonic origin of these tissues since both buccal cells and brain cells are 

ectodermal in origin and both lymphocytes and cardiac muscle cells are derived from the 

mesoderm. Children with mosaicism for Down syndrome have been shown to have a 

significantly lower prevalence of major congenital heart disease (36.4%) than children 

with non-mosaic Down syndrome (49.3%) (Shin et al., 2010). The types of congenital 

heart disease were also found to be different between individuals with mosaicism and 

non-mosaic or “complete” trisomy 21. The atrioventricular canal defect was found to be 

more common in the individuals having “complete” trisomy 21, whereas the less severe 

anomaly, atrial septal defect, was more prevalent in mosaic individuals (Papavassiliou et 

al., 2009).  

 

Age-related changes leading to the acquisition of “mosaicism” have been 

documented in individuals having “complete” trisomy 21 (Jacob et al., 1961; Percy, et al., 

1993; Jenkins, et al., 1997). The causes of chromosome 21 loss with advanced aging are 

not clear, but could be due to: (1) an increase in abnormal cell division (e.g., higher 

frequency of mitotic nondisjunction) with increasing age leading to loss of a chromosome 

21; and (2) cell-line selection in the case of individuals having constitutional mosaicism 
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(e.g., diploid cells have proliferative advantage). Percy, et al. (1993), who observed a 

significantly increased proportion of diploid cells in older individuals having Down 

syndrome, hypothesized that the age-related loss of chromosome 21 could be related to 

the clinical expression of Alzheimer disease in these individuals, as well as individuals 

from the general population.  

 

Diagnostic tools in cytogenetics and their abilities to detect mosaicism 

While consistent constitutional mosaicism is a rare event, more recent studies 

have suggested that acquired chromosomal mosaicism may be a common event in the 

very early development of embryos (Vorsanova, 2005). Based on these new observations 

of “global” mosaicism, Iourov (2008) has speculated that residual somatic mosaicism 

may be a contributive factor affecting phenotypic expression variations in several age-

related diseases, including, but not limited to cancer (Albertson and Pinkel, 2003; 

Albertson and Pinkel, 2005).  

 

Chromosomal mosaicism can be detected by conventional Giemsa banding 

(GTG-banding) karyotype analysis, which is currently the standard diagnostic test used in 

clinical cytogenetic laboratories. This test allows for the whole genome identification of 

balanced and unbalanced numerical and structural chromosome aberrations. However, 

subtle cytogenetic aberrations may not be detected. At the level of routinely prepared 

metaphase chromosomes, which typically contain ~400-500 bands per haploid genome, 

deletions and duplications that are smaller than 5-10 Mb may not be reliably detected. 
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Deletions and duplications of 3-5 Mb can be detected by high resolution G-banding of 

prophase or early metaphase chromosomes, which contain ~800-1000 bands per haploid 

genome. However, this method, is not routinely used due to the fact that it is very labor 

intensive (Shaffer and Bejjani, 2004).  

 

In the late 1980s and early 1990s, molecular genetics techniques, in particular, 

fluorescent in situ hybridization (FISH) (Pinkel et al., 1986), were implemented in 

clinical cytogenetic laboratories. FISH is currently one of the most widely used 

diagnostic molecular cytogenetic methods and has become an essential adjuvant assay. 

FISH is based on the hybridization of complementary fluorescent-labeled probe(s) to 

target DNA sequences. It can be performed on both metaphase chromosomes and 

interphase nuclei and can allow for the detection of submicroscopic rearrangements at the 

resolution of approximately 80-200 kb (Shaffer et al., 2001). A large number of probes 

are available for different diagnosis purposes (summarized in Table 2).  

 

 

 

 

 

 

 

 



www.manaraa.com

 
 

19 
 

Table 2: Variations of commonly used FISH probes 

 

 

 

 

Type of FISH probe Diagnosis purpose Reference 

Chromosome enumeration 

probes (centromeric probes)   

Detection of aneuploidy (e.g., 

trisomy 21, triomy 18 and 

trisomy 13) 

Klinger et al., 1992 

Locus-specific probes Detection of particular 

microdeletions or duplications 

(e.g., RB1 locus) 

Kallioniemi et al., 1992 

Dual color fusion probes  Detection of gene 

rearrangements in cancer (e.g. 

BCR/ABL) 

Dewald et al., 1993; Bentz et al., 1994 

Dual color break apart 

probes 

Detection of gene 

rearrangements in cancer (e.g.  

IGH/MYC) 

Einerson, et al., 2006 

Telomeric probes Detection of cryptic deletions 

and translocations in the 

telomeric regions 

NIH and Institute of Molecular 

Medicine Collaboration, 1996 

Multicolor FISH (cenM-

FISH) and/or spectral 

karyotyping (SKY)  

Characterization of a multitude 

of alterations 

Nietzel et al., 2001; Schrock et al., 1996; 

Schrock et al., 1997; Speicher et al., 

1996; Chudoba, et al., 1999 
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The use of FISH methods for scoring targeted chromosomal regions in interphase 

nuclei, in particular, allows for assessments of chromosome copy numbers from large cell 

populations, making FISH a time efficient and sensitive method. Although FISH allows 

for higher resolution for detecting small genomic abnormalities than conventional G-

banding, this approach is limited in that it lacks whole genome coverage and requires a 

priori  knowledge (e.g., distinctive dysmorphic features for genetic syndromes or 

suspected diagnosis for hematologic malignancies) to identify the test(s) that will be of 

clinical value. While 24-color FISH methods (M-FISH or SKY) provide whole genome 

coverage, these methods have limitations akin to those noted for conventional GTG-

banding, in that their ability to detect small deletions is limited. In addition, they do not 

allow for the recognition of intrachromosomal aberrations that do not result in a change 

in chromosome number or mortphology and are most effectively applied only for the 

interpretation of metaphase chromosome preparations (not interphase nuclei).  

 

 Comparative genomic hybridization (CGH), which was developed by 

Kallioniemi et al. (1992), is an alternative FISH-based methodology that uses DNA from 

the specimen being evaluated as the “probe” to determine chromosomal alterations. 

Briefly, in this method, two genomic DNA samples (test and reference) are differentially 

labeled with distinct fluorochromes and then competitively hybridized onto normal 

metaphase chromosomes. The ratio of the two fluorochromes present on the 

chromosomes are then quantified, using specialized computer software, to determine 

imbalances (gains and/or losses) in DNA sequences across the genome. However, since 
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conventional CGH is carried out on metaphase chromosomes, its resolution is limited to 

~3-10 Mb (Pinkel et al., 1998). In addition, this method cannot detect balanced 

chromosome rearrangements, such as balanced reciprocal or Robertsonian translocations 

and inversions. Recently, genomic microarrays were developed for CGH applications. 

Array CGH shares the same principles as conventional CGH, except metaphase 

chromosomes have been replaced with DNA fragments (e.g., bacterial artificial 

chromosomes [BACs], oligonucleotides and/or PCR-generated sequences) as targets for 

the hybridization (Solinas-Toldo et al., 1997; Pinkel et al., 1998; Snijders et al., 2001; 

Pinkel and Albertson, 2001; Fiegler et al., 2003a; Fiegler et al., 2003b Veltman et al., 

2003; Vissers et al., 2003; Albertson and Pinkel, 2003).  

 

Currently there are 2 distinct types of microarray platforms: 1) single channel 

platform, in which test and reference samples are hybridized onto different matrices and 

2) two-channel platform, in which both test and reference samples are co-hybridized on 

the same matrix (i.e., array CGH). Fundamentally, they operate by the same principle. 

For array CGH platforms, DNA from test and reference samples are labeled with 

different fluorophores and then competitively hybridized to a microarray including 

hundreds to millions DNA probes that are complementary to targeted genomic regions. 

The relative fluorescence intensities of the test DNA to the reference DNA is then 

calculated, with this value typically being transformed to a log2 ratio for assessment. A 

log2 ratio represents a fold change measurement of input signals for the test and reference 

samples and therefore reflects the copy number change.  



www.manaraa.com

 
 

22 
 

 

The resolution of array CGH is limited by the size of the target sequences, as well 

as the distance between the BACs or oligos spotted onto the array. Recently, high density 

single nucleotide polymorphism (SNP) genotyping arrays, which were originally 

designed for whole genome association studies, have gained popularity for cytogenetic 

testing. This technology relies on hybridization of one sample to an array, with the results 

of that hybridization being compared in silico to a database of standard reference DNA to 

determine the presence of imbalances. SNP arrays have the advantage that they allow for 

the detection of long contiguous stretches of homozygosity (LCSH), in addition to 

recognizing copy number gains and losses. Thus, both imbalances and LCSH, the latter 

of which may be indicative of isodisomic uniparental disomy (UPD), identity by descent, 

or loss of heterozygosity (LOH), can be detected in a single experiment.  

 

The clinical implementation of array-based technology has revolutionized 

cytogenetic diagnostic testing, being recently recommended as a first-tier assessment test 

for chromosomal imbalances (Miller et al., 2010). Array-based technologies have been 

developed for the analysis of clinically significant regions (targeted array) (Cheung et al., 

2007) and the entire genome (whole genome array) (Snijders et al., 2001; Veltman et al., 

2003; Vissers et al., 2003). The current limitations of array CGH include the inability to 

detect polyploidy and balanced chromosome rearrangements. Copy number alterations of 

unknown significance can also be problematic since significant knowledge regarding 

copy number variations (CNVs) throughout the genome and their exact roles are yet to be 
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determined. At this time, it is recommended that abnormalities or variations that are not 

recognized as variable regions in genome data bases, have reflex testing of parental 

samples to determine the clinical relevance, if any, of these findings (Manning and 

Hudgins 2007). 

 

All of the cytogenetic tools described above can be used for mosaicism detection 

(Table 3). In general, when 20, 30 or 50 cells are evaluated without detection of 

mosaicism, the lowest level of mosaicism excluded with 95% confidence is 14, 10 and 

6%, respectively (Hook, 1977). However, mosaicism that affects a small chromosomal 

region (i.e., less than 3Mb) or that is present in leukocytes other than T-cells may escape 

detection using conventional G-banding. Interphase FISH is a sensitive method for 

detecting low level mosaicism, allowing for the recognition of cell lines present in as low 

as 1% of the cell population (Dewald G, et al., 1998). However, this technology is limited 

because relatively few loci can be interrogated in a single experiment. Therefore, without 

prior knowledge of the chromosome or chromosomal region affected, mosaicism might 

be missed.  
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Table 3: Comparison of molecular cytogenetic techniques used for mosaicism detection 

 

 

Cytogenetic techniques Level of mosaicism detection 

Chromosome G-banding 6-10%
 
(Barch et al., 1997) 

FISH <1 %
 
(Dewald et al., 1998) 

Multiplex ligation-independent probe amplification 

(MLPA) 

14% (Van Opstal et al., 2009) 

Quantitative fluorescent polymerase chain reaction 

(QF-PCR) 

10% (reviewed in Hulten et al., 2003) 

Conventional CGH 16% (Lestou et al. 1999) 

Array CGH 5-20% (Ballif et al., 2006; Cheung et al., 2007; 

Conlin et al., 2010) 
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Since microarray-based technology is increasingly being used in clinical 

diagnosis, an evaluation of its sensitivity for mosaicism detection is essential. The ability 

of array-based technology to detect the presence of multiple cell populations has also 

been shown through studies of in vitro contrived cellular admixture, constitutional 

mosaicism and acquired chromosome abnormalities in cancers (Table 4). Based on their 

in vitro contrived cellular admixture studies, Ballif et al. (2006) and Scott et al (2010) 

concluded that mosaicism levels of 20% to 40% could be consistently detected using 

array technology, but that values of 10% or less could not be unequivocally distinguished 

from non-mosaic cases. Using a SNP array, Conlin et al., 2010 reported detecting 

mosaicism for complements present is a low as 5% of cells. In this study, mosaicism was 

identified from a logR ratio and B allele frequency (BAF). The latter was also suggested 

to be useful for identifying mechanisms of mosaicism occurrence (i.e., origin of 

segregation error). However, when the proportion of abnormal cells was very low (e.g., at 

5-10%), distinction between meiosis and mitosis origins were problematic. 
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Table 4: Summary of previous studies on mosaicism using array-based technologies

 

Manufacturer 

array 

 

Array 

type 

 

Specimen 

type 

 

# mosaic cases 

studied 

 

Chromosome(s) 

evaluated 

% Mosaicism (gain/loss) 
 

 

Reference 
FISH/GTG Array (% minimum detected) 

 

GenoSensor 

Array 300 

 

BAC/PAC (CGH) 

 

frozen fetal 

lung tissue 

 

1 

 

i(18q) 

 

17%(GTG),21%(FISH) 

 

NA 

 

Le Caignec et al., 

2005 

 
In house 

 
BAC (CGH) 

 
PB 

 
1 

 
monosomy 7 

 
8% 

 
5% 

 
Manten et al., 2006 

 
Signature Chip 

 
BAC (CGH) 

 
PB 

 
18a 

5b 

 
varya 

trisomy21b 

 
10-50%(uncultured cells) 

3-77% (cultured cells) 

10-50% (artificial) 

 
10% (subtle) 

20% (clear) 

 
Ballif et al., 2006 

 

In house 
targeted 

 

BAC (CGH) 

 

PB 

 

12 

 

vary 

 

1.5-31%(uncultured cells) 
2-33%(cultured cells) 

 

7.0% 

 

Cheung et al., 2007 

 

44k Agilent 

 

Oligo (CGH) 

 

PB 

 

8 

 

trisomy 13, 
trisomy 21 

 

10.3-77.1%(QF-PCR) 

 

10-12.3% 

 

Hoang et al., 2007 

 

In house 
targeted 

 

BAC (CGH) 

 

PB 

 

5 

 

trisomy 14 

 

9.5-42% (uncultured cells) 
2-15% (cultured cells) 

 

12.4% 

 

Shinawi et al., 2008 

 

GeneChip 
Mapping 250K 

Nsp Array 

 

SNP 
 

 

? PB or BM 

 

3 

 

trisomy 21 

 

25-50% 

 

NA 
 

 

Gondek et al, 2008 

 
In house 

 
BAC (CGH) 

 
PB 

 
48 

 
vary 

 
NA 

 
10% 

 
Neill et al., 2010 

 
105K Agilent 

 
Oligo (CGH) 

 
PB 

 
48 a 

4 b 

 
vary a 

trisomy 21b 

 
10-30% b 

 
21% a 

10%-20% (subtle) b 
30% (clear) b 

 
Neill et al., 2010 

 

Affymetrix 50K 
Xba Array 

 

SNP 
 

 

fibroblast 

 

6 

 

trisomy 8 

 

0-100% 

 

10% (subtle) 
20% (clear) 

 

Cross et al., 2007 

 

Affymetrix 6.0 
Array 

 

SNP 

 

PB 

 

1 

 

trisomy 21 

 

8-13% 

 

NA 

 

Leon et al., 2010 
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Table 4: Summary of previous studies on mosaicism using array-based technologies (continued) 

 

 

Manufacturer 

array 

 

Array 

type 

 

Specimen 

type 

 

# mosaic cases 

studied 

 

Chromosome(s) 

evaluated 

% Mosaicism (gain/loss) detected 
 

 

Reference 
FISH/GTG Array 

 

44K Agilent 

 

Oligo (CGH) 

 

PB, POC, 

CV 

 

7 a 

28 b 

 

vary a 

[trisomy 21, 

monosomy X, 

dup(3), del(15)] b 

 

17-94% a 

0-100%b 

 

10%  whole chromosome 

20-30%  segmental aneuploidy 

 

Scott et al., 2010 

 

Illumina  

HumanHap550 
Bead Chip (V3) 

 

SNP 

 

PB, skin 

 

21 

 

vary 

 

2-100% 

 

5% 

 

Conlin et al., 2010 

 

Illumina 
Quad610 

genotyping 

Bead Chip 

 

SNP 

 

UC 

 

1 

 

t(5;12) [del(5) 
and dup (12)] 

 

87% (AF), 13-43% 
(postmortem tissues, various 

organs) 

 

20% (UC) 

 

Veenma et al., 2010 

 

Illumina 

HumanHap 
1M Bead Chip 

 

SNP 

 

PB 

 

34 

 

Vary 

 

NA 

 

10% (UPD), 18% (del), 23% 

(dup and/or trisomy) 

 

Rodríguez-Santiago 

et al., 2010 

 

244K Agilent 

 

Oligo (CGH) 

 

PB, BM 

 

3 

 

del(20), del(13), 
del(7) and dup(7) 

 

11.5-14.5% 

 

11.9% 

 

Valli et al., 2011 

a  real specimen, b artificial specimen (a mixture of specimens or DNA from abnormal and normal cases), PB = peripheral blood, BM = bone marrow, 

UC = umbilical cord blood, POC = product of conceptus, CVS = chorionic villi, AF = amniotic fluid 
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Rationale for study 

 

This review has shown the clinical relevance of constitutional (and acquired) 

mosaicism and highlighted the strengths and weaknesses of diagnostic methodologies 

used for mosaicism detection. While exciting results of case reports suggest that array 

technology can be useful for detecting constitutional mosaicism in patients presenting 

with clinical findings, to date, no systematic study of individuals having carefully 

documented proportions of mosaicism has been completed. Therefore, the first aim of 

this study was to determine the effectiveness of array-based technology for detecting 

levels of mosaicism. This aim was achieved by studying individuals having mosaicism 

for Down syndrome for whom the proportion of trisomic cells had been previously well 

documented using FISH methodology. The data obtained from this facet of this study 

allowed for testing the following hypotheses: 

 

1) The relative fluorescence intensities obtained from microarray data, measured by 

the smoothed mean of log2 ratios of all probes across chromosome 21, are 

positively correlated with percentage of trisomic cells determined to be present in 

study samples using FISH methodology. 

 

2) Array-based technology allows for the detection of a trisomic cell population that 

is present in 20% or more cells.  
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A second aim of this study was to gain insight on the effect that trisomy 21 has on 

telomere attrition. Given that people having Down syndrome show signs of premature 

aging and are at risk for developing Alzheimer disease, studies of their cells may provide 

knowledge regarding the relationship between telomere shortening, genomic instability, 

aging and Alzheimer disease. Studies of isogenic trisomic and normal cells from 

individuals having mosaicism for trisomy 21 provide a unique opportunity to evaluate 

effects of trisomy 21 on a trait without confounding influences attributable to differences 

due to age, genomic complement and environment exposure. This study provides the first 

reported measure of both chromosome-specific telomere lengths and the frequency of 

acquired chromosome abnormalities in trisomic cells and isogenic euploid cells obtained 

from the same individuals. The data obtained from this study allowed for testing of 

the following hypotheses: 

 

1) There are differences in telomere lengths between trisomy 21 cells and their 

isogenic euploid cells. 

 

2) These differences in telomere length affect a subset of chromosomes, rather 

than equally affecting all chromosomes. 

 

3) There is an increased frequency of chromosomal instability in the trisomic 

cells compared to euploid cells.  
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Chapter 2 

 

The use of array-based technology for mosaicism detection 

 

Introduction 

  

 Mosaicism is a condition that denotes the presence of two or more cell lines that 

originated from a single zygote, but differ in their genetic make-up as a result of 

nondisjunction or mutation (Thompson and Thompson, 2004). Constitutional mosaicism 

has been observed in both somatic and germ-line tissues in humans. In addition to 

mosaicism, acquired somatic cell chromosomal changes can result in the presence of 

multiple cell lines. The identification of mosaicism/cellular admixture is clinically 

important, with its impact being especially relevant for evaluating cancer specimens, the 

latter of which are becoming one of the largest needs in diagnostic testing.  

  

 Despite its rare incidence, constitutional mosaicism is a formidable diagnostic 

challenge. Mosaicism has been reported for many different chromosomes and many 

different types of abnormalities including monosomy, trisomy, triploidy, deletions, 

duplications, translocations, rings and inversions (Schinzel, 2001). The clinical 

significance of mosaicism has been documented in humans from the prenatal to postnatal 

periods. During very early embryogenesis, chromosomal mosaicism has been shown to 
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be an unexpectedly common event, being seen in 50% to 90% of very early embryos 

studied through in vitro fertilization programs (Bielanska et al., 2002, Daphnis, et al., 

2005; Vanneste et al., 2009; Santos, et al., 2010). Furthermore, about 50% of all 

spontaneous abortions have been conjectured to exhibit chromosomal mosaicism 

(Vorsanova et al., 2005), but this latter value has not been consistently seen by other 

investigators, with the variation in results possibly reflecting, at least in part, 

methodological differences. Mosaicism has also been associated with postnatal 

morbidity, including chromosomal syndromes, mental retardation and multiple congenital 

malformations, autism and schizophrenia. Multiple cell lines arising from acquired 

chromosomal changes have also been observed in a variety of health conditions, 

including but not limited to Alzheimer disease and neoplasia (Youssoufian and Pyeritz, 

2000; Yurov et al., 2008; Schinzel, 2001).  

  

 The tissue-specific distribution and percentage of cells having constitutional 

mosaicism in an individual depends on the timing of the error, the cell lineage(s) 

involved and the survival potential of the cells (Kalousek et al., 2000). The consequences 

of mosaicism for an unbalanced cell line often are associated with greater clinical 

consequences when the error occurs earlier in embryogenesis, since these cases tend to 

have a higher percentage of abnormal cells and/or more tissues involved (especially if the 

error arose prior to cell lineage differentiation). The results of a study reported by Hsu et 

al., 1996 suggested that fetuses with a higher percentage of abnormal cells (>60 per cent) 

were at a higher risk for abnormal outcomes, compared to fetuses with a lower 
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percentage of abnormal cells (< 15 per cent). Often times, individuals with low-level 

mosaicism may be overlooked because they have subtle phenotypes. However, some 

patients with low-level mosaicism have been reported to have clinical outcomes (Yurov 

et al., 2007; Shinawi et al., 2008). In addition, individuals with low-level mosaicism 

could be at an increased risk for conceiving a child with a chromosomal imbalance since 

the aberrant cell line may be present in their gametes (Smith et al., 1962; Hsu et al., 1971; 

Mehes et al., 1973; Kaffe et al., 1974; Richards et al., 1974; Priest et al., 1977; Begleiter 

et al., 1977; Werner et al., 1982; Meschede et al., 1998; Wise et al., 2009; Kovaleva and 

Shaffer, 2003; Herrgård et al., 2007). Similarly, in conditions resulting from acquired 

somatic cell aneuploidy, such as the hematological malignancies, the presence of a small 

clone of cells having a chromosomal aneuploidy and/or rearrangement may be of great 

clinical relevance for the management of the patient’s care, including decisions regarding 

their diagnosis, prognosis prediction and selection of targeted therapeutic options 

(Maciejewski et al., 2009).  

  

 Standard G-banding chromosomal tests may result in low-level mosaicism being 

missed or misinterpreted as a culture artifact, since this analysis is typically limited to the 

assessment of 20 metaphase spreads. G-banding analysis can also result in the failure to 

identify mosaicism due to selective in vitro growth pressure that may favor cells having a 

normal karyotype. When constitutional mosaicism is suspected, for example, due to a 

patient having variegated skin pigmentation, hypomelanosis of Ito and/or growth 

asymmetry (Donnai et al., 1988; Thomas et al., 1989; Woods et al., 1994), or when a 
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small number of cells with significant chromosome abnormalities are detected in the 

initial cytogenetic analysis, the examination of additional cells is usually indicated. In 

general, when 20, 30, or 50 cells are evaluated without detection of mosaicism, the lowest 

level of mosaicism excluded with at least 95% confidence is 14, 10 and 6%, respectively 

(Hook, 1977).  Theoretically, fluorescent in situ hybridization (FISH) is considered to be 

an ideal laboratory technique for detecting mosaicism since cell lines that are present in 

5% or fewer cells can be detected (Papavassiliou, et al., 2009; Dewald, et al., 1998). 

However, scoring FISH is labor intensive, requires precedent knowledge of specific 

chromosome abnormalities and also lacks whole genome coverage.  

 

 Recently, array-based technology has been developed and has shown several 

advantages when compared with other existing techniques used for the analysis of 

chromosomal abnormalities. It allows for genome-wide analysis at the highest resolution 

of less than 700 bp; however, in practice, other parameters may influence the resolution, 

such as experimental “noise” (which is often attributable to DNA fragmentation) and the 

sensitivity of copy number measurements (Bernardini et al., 2010.). In addition to 

improved resolution, another potential advantage of array-based diagnostic testing is that 

cells can be evaluated without potential growth selection that might arise from an in vitro 

culture system. In contrast, routine metaphase chromosome studies to detect 

constitutional chromosomal changes require three (blood) to seven or more (prenatal 

cases; products of conception) days of in vitro cell culture and aberrations that are smaller 

than 3-10 Mb cannot be reliably detected (Shaffer and Bejjani, 2004). Although array-
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based technology has many strengths, it is limited in that it will not allow for the 

detection of balanced chromosomal findings or polyploidy, which can be detected using 

conventional G-banding methodologies. 

  

 Currently, two broad types of array-based technologies are used for clinical 

cytogenetic testing; comparative genomic hybridization arrays (CGH arrays) and single 

nucleotide polymorphism arrays (SNP arrays). In array CGH, patient DNA and control 

DNA are labeled with different fluorochromes and then competitively hybridized to 

arrays having DNA probes (e.g., bacterial artificial chromosomes array [BAC array] or 

synthesized DNA fragments [oligonucleotide array] that are immobilized on glass, chips, 

or beads). The fluorescent intensities of the case to control DNA values are then 

compared to determine copy number alterations across the entire genome. The other type 

of array, a SNP array, was originally designed for whole genome association studies, but 

has been adapted for cytogenetic testing. Given that SNPs are not distributed evenly 

across the genome, several of the original SNP-based microarray platforms were 

modified for cytogenetics testing by incorporating additional copy number probes, the 

latter of which allowed for increased genomic coverage of clinical relevant regions 

(Maciejewski et al., 2009) and better detection of copy number changes. When compared 

to array CGH platforms, SNP arrays have the additional advantage of allowing one to 

simultaneously analyze copy number changes, as well as copy number neutral loss of 

heterozygosity (LOH) and long contiguous stretches of homozygosity (LCSH), thereby 

allowing for the recognition of uniparental disomy (UPD). For assessments using SNP 
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arrays, patient DNA is labeled and hybridized to the microarray, with the results being 

compared with a database of standard reference DNA values.  

  

 While several geneticists have confirmed the ability of array-based technology to 

detect subtle or small abnormalities that were not perceived using conventional 

cytogenetic testing, the ability of array-based technologies to detect the presence of 

mosaicism remains controversial. A number of investigators have reported detecting a 

mosaic complement in blood specimens from individuals that was missed by traditional 

chromosomal analysis techniques (Table 3). Ballif, et al (2006) suggested that the array 

presented an advantage for mosaicism detection since all nucleated blood cell lineages 

could be evaluated (rather than just T-cells following mitogenic stimulation with 

phytohemaglutin, as is the case for conventional cytogenetic testing). The results of case 

reports, have led to a range of estimates regarding the lower detection limits of array-

based technology. Systematic studies that were completed with the goal of evaluating the 

efficacy of array technology for mosaicism detection are few in number. The majority of 

these systematic studies have been performed on “artificial mosaicism” samples that were 

prepared by mixing blood or DNA samples from individuals having a known abnormal 

chromosome complement with normal reference DNA (Ballif et al., 2006; Cheung et al., 

2007; Hoang et al., 2007). Investigators have often elected this approach due to the rarity 

of constitutional mosaicism, which makes it difficult to ascertain multiple patients having 

mosaicism for the same condition. While these laboratory created “mosaic” studies 

provide insight as to the technical strengths of the array assay, they cannot fully mimic 
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the experience that would be encountered when studying individuals having mosaicism, 

the latter of whom might have variable proportions of the different chromosomal 

complements in the total cell population (different cell types as noted above) that are 

present in clinical specimens. Therefore, we carried out a blinded study designed to test 

the efficacy of array-based technologies for detecting the trisomic cell lines present in 

individuals having mosaicism for trisomy 21. The data obtained from this study allowed 

for testing the following hypotheses: 1) The relative fluorescence intensities obtained 

from microarray data, as measured by the smoothed mean of log2 ratios of all probes 

across chromosome 21, are positively correlated with the percentage of trisomic cells 

determined to be present in study samples using FISH methodology (the latter of which is 

currently considered the “gold standard” for mosaicism assessment); and 2) Array-based 

technology allows for the detection of mosaicism of a trisomic cell population that is 

present in 15% or more cells. 
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Materials and Methods 

 

Study Participants 

 The study participants having mosaicism for trisomy 21 were recruited through 

parental support groups [National Down Syndrome Congress (NDSC), the International 

Mosaic Down Syndrome Association (IMDSA) website, newsletters and conferences] 

and through clinical visitations. The only inclusion criterion was that the individual had a 

confirmed diagnosis of mosaicism for trisomy 21 (usually based on GTG-banding studies 

that were completed at or near the time of birth). After providing their informed assent 

(children)/consent (parents or competent adults having mosaicism) (Virginia 

Commonwealth University Institutional Review Board protocol #179), each study 

participant provided a peripheral blood specimen, with some individuals also electing to 

provide buccal smears for FISH studies.  Confirmation and quantitation of the percentage 

of trisomic cells present was done using FISH on cultured and/or uncultured 

lymphocytes, as described below. Blood specimens were also evaluated from positive 

controls (individuals having “complete” trisomy 21) and negative controls (individuals or 

proficiency test specimens (College of American Pathology) having a previous diagnosis 

that showed either a normal complement or a chromosomal finding that did not involve 

chromosome 21). Specimens that were collected from control individuals followed the 

same informed assent /consent procedures as those used for the study participants having 

mosaicism (VCU IRB protocol #179). Prior to array specimen processing, the DNA 

samples were coded to ensure that the investigators were blinded to the karyotype status 
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of the specimens, thereby mimicking the scenario that would occur in the clinical 

evaluation of patients using array technology.  

 

Sample Collection and DNA Extraction 

 Three to five milliliters of peripheral blood was collected from each participant, 

with DNA being extracted following standard procedures (Gentra Puregene, Qiagen, 

Valencia, CA; manufacturer protocol). Prior to microarray analysis, all DNA samples 

were quantified using a NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies, Wilmington, DE). Gel electrophoresis was also used for monitoring 

potential DNA degradation. The quality control criteria used required that all DNA 

samples processed for microarray studies have an OD-260/280 ratio between 1.80 and 

2.00, with a major band size range of approximately10-20 kb. 

 

SNP Array Hybridization and Analysis 

  The Affymetrix Genome-Wide Human SNP Array 6.0 was used for the SNP array 

studies. This platform contains more than 906,600 SNP probes and more than 946,000 

copy number (CN) probes.  Each SNP probe contains 3-4 replicates per allele. The CN 

probes include markers that are distributed evenly across the genome. The median 

distance between probes for SNP and copy number assessments combined is less than 

700 bp (Affymetrix Genome-Wide Human SNP Array 6.0 data sheet). Array experiments 

were performed according to the manufacturer’s protocol (Affymetrix, Santa Clara, CA). 

Briefly, a total of 500 ng of genomic DNA was digested with Nsp I and Sty I restriction 
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enzymes. All fragments resulting from restriction enzyme digestion were ligated to Nsp I 

and Sty I adaptors, which recognize the cohesive 4 base pair overhangs. The adaptor-

ligated DNA fragments were subsequently amplified using a generic primer that 

recognizes the adaptor sequence. PCR amplification products for each restriction enzyme 

digest were combined and purified using magnetic beads (AMPure XP, Agencourt, 

Beckman Coulter, Brea, CA), with the purified PCR products being fragmented with 

DNaseI enzyme and end-labeled using a Terminal Deoxynucleotidyl Transferase (TdT) 

enzymatic reaction. The labeled DNA was hybridized to an Affymetrix Genome-Wide 

Human SNP Array 6.0 overnight.  Following hybridization, the arrays were washed and 

stained with streptavidin phycoerythrin (SAPE) and a biotinylated antibody using a 

Fluidic Station 450. Following staining, the arrays were scanned using a GeneChip 

Scanner 3000 7G.  

  

The sample files generated from the scanner were processed using the Genotyping 

Console Software Version 4.1.0 (Affymetrix, Santa Clara, CA) to assess data quality 

control (QC) and generate copy number files (CNCHP file) for further analysis in the 

Chromosome Analysis Suite Version 1.1 (ChAS) (Affymetrix, Santa Clara, CA). 

Mosaicism was determined by inspection of: 1) the CN value (falling between 2 and 3 for 

this cohort); 2) deviation of the log 2 ratio track from 0 and mean log2 ratio values 

between 0 (2/2 copies) and 0.58 (3/2 copies); 3) alteration of allele difference patterns 

(Figure 2); and 4) a smoothed log 2 ratio value that fell between 2 and 3 (Figure 2). 
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CGH Array Analysis 

 CGH array experiments were performed using a CytoChip array according to the 

manufacturer’s protocol (BlueGnome, Cambridge, UK). Each CytoChip array was 

comprised of 4400 BAC clones with a median size of 565 kb and 1,357 subtelomeric 

clones having a median size of 250 kb. Each clone had 4 replicates via a dye-swap 

experimental design (for disease specific clones, each clone had 6 replicates). Random 

priming was used to label test and reference control DNA samples, according to the 

manufacturer protocol (BlueGnome). Briefly, a total of 800 ng of genomic DNA was 

used, with 400 ng of DNA being labeled with Cy3 and Cy5 dyes, respectively. The same 

quantity and labeling scheme was used for sex opposite reference DNA, the latter of 

which was purchased as a pooled human DNA sample (Promega G1471-male and 

G1521-female). After labeling, the test and reference DNA samples were run through an 

AutoSeqTM G50 column and then checked for DNA yield and dye incorporation using a 

NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE). 

After combining the test and reference DNA samples (i.e., Cy3-labeled test DNA and 

Cy5-labeled reference DNA), the DNAs were ethanol precipitated and suppression 

hybridized using human COT-1 DNA and herring sperm DNA in 10% dextran sulphate. 

Following suppression hybridization, the DNAs were hybridized to the CytoChip array 

and incubated at 37°C in a humidified hybridization chamber for 21-24 hours.  Following 

hybridization, non-specifically bound and unbound DNA was removed by washing in a 

2X SSC/0.05% Tween-20 twice at room temperature for 10 minutes each, followed by 

serial washing in 2X SSC/0.05% Tween-20 at 60°C for 5 minutes, 1XSSC at 60°C for 5 
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minutes, 0.1X SSC at 60°C for 5 minutes, and 0.1X SSC at room temperature for 10 

minutes. The array was immediately centrifuged to dry and scanned using a PerkinElmer 

ScanArray Gx PLUS (PerkinElmer Life and Analytical Sciences, Shelton, CT) at 5 µm 

resolution. The intensity data files were analyzed using the BlueFuse for Microarrays 

software (BlueGnome, Cambridge, UK). Mosaicism was recognized by a deviation of the 

log2 ratio values. The negative control specimens are expected to  have a mean log2 ratio 

for chromosome 21 equal to zero, while the expected copy number gain for positive 

controls is 0.58 (a 3/2 ratio). 

 

FISH Methodology 

 FISH was performed using probes specific for chromosome 21 (test probe) and 

chromosome 13 (control probe) to determine the proportion of cells having trisomy for 

chromosome 21. These studies were completed on cultured (72 hours) and uncultured 

(blood smears) leukocyte nuclei as described previously (Papavassiliou, et al., 2009). 

Briefly, for the cultured cell preparations, the slides were serial dehydrated 2 minutes 

each in cold ethanol series (70%, 85%, and 100%). After air-drying, a 10μl aliquot of the 

probe mixture (chromosome 21q22.13-21q22.2 - D21S259\D21S341\D21S1432; 

chromosome 13q14 – RB1)(Abbott, IL) was added to the slides, with the target 

chromatin and probes being co-denatured at 73°C for 2 minutes. Following hybridization 

(at 37ºC for 4-16 hours), the non-specifically bound and excess probes were removed by 

washing (0.4X SSC/0.3% NP-40 solution at 72°C for 2 minutes, followed by 2X 
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SSC/0.1% NP-40 wash solution for 1 minute). The nuclear chromatin was then stained 

using a DAPI/antifade solution (Abbott, IL).   

 For the uncultured preparations, an aliquot of blood was smeared on the slides (20 

l of blood per slide) and air-dried. The slides were serially fixed in a modified Carnoy’s 

fixative (3 parts of methanol and 1 part of acetic acid) at –20
○
C for 30 minutes. The 

slides were then placed in 90% formamide in 2XSSC solution at 37
○
C for 5 minutes. The 

slides were serial dehydrated for 2 minutes each in an ethanol series (70%, 85%, and 

100%). After air-drying, a 10μl aliquot of the probe mixture (chromosome 21q22.13-

21q22.2 and chromosome 13q14) (Abbott, IL) was added to the slides. The target 

chromatin and probes were co-denatured at 75°C for 10 minutes. Following overnight 

hybridization, excess and unbound probes were removed by serial washing in 0.4XSSC at 

72
 
°C for 2.5 minutes followed by 0.1% NP-40 in PBS at room temperature for 2 

minutes. The nuclei were counterstained with DAPI/antifade solution (Abbott, IL).  

 Probe signals were visualized using a Zeiss Axiskop equipped with single 

(Spectrum Orange, Spectrum Green) and triple band pass filters. In order to detect 

mosaicism levels as low as 5% with greater than 99% power, a total of 1000 cultured 

blood lymphocyte nuclei, and 500 uncultured blood nuclei were scored for each study 

participant (Dewald et al., 1998). 
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Results 

 

SNP arrays were processed for 31 DNA samples, including 13 samples from 

individuals with mosaicism for trisomy 21, 13 samples from individuals having a 

previous diagnosis that showed either a normal complement or a chromosomal finding 

that did not involve chromosome 21 (negative controls) and 5 samples with a previous 

diagnosis of full or partial (due to a structural change that was in every cell) trisomy 21 

by G-banding analysis (positive controls).  BAC arrays were processed on 10 DNA 

samples, including 6 samples from individuals with mosaicism for trisomy 21, 3 samples 

from individuals with chromosome abnormalities that did not involve chromosome 21 

(negative controls) and 1 individual with a previous diagnosis of full trisomy 21 (positive 

control). In a Table 5 a summary of the microarray results obtained from both array 

platforms is presented. The results of each case are compared to previous cytogenetic 

analyses and indicate the percent mosaicism observed by the FISH compared to 

microarray methodologies. 

 

As expected, the CN for chromosome 21 detected in each of the negative control 

cases was equivalent to 2 (no aberrations noted).  In addition, abnormalities involving 

other chromosomes that were present in these cases were correctly identified with no 

additional clinically relevant aberrations being detected. The background level of cells 

having gains involving chromosome 21 based on the SNP microarray analysis in the 

negative control group ranged from 0% to 4%. Using only the CN state values calculated 
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by the ChAS software (which has criteria requiring 30% or higher mosaicism for 

detection), only 5 of the 13 mosaic cases were detected, with their estimated  percentage 

of trisomic cells ranging from 28% to 100%. By expanding the ChAS software analysis 

to include an assessment of the smoothed signal, a total of 8 of the 13 individuals with 

mosaicism were readily identified as having mosaicism, with a case having 15% trisomic 

cells being detected. A mosaic case having 10% trisomic cells showed subtle changes 

from the non-mosaic cases, but yielded a value that was equivocal and thus not clearly 

defined as mosaicism (Figure 2). In two individuals having approximately 19% trisomic 

cells as determined by FISH, the SNP array patterns were within normal limits (false 

negative). Interestingly, two individuals with mosaicism involving approximately 80% 

trisomic cells, as determined by FISH, had an array value that was consistent with non-

mosaic (“full”) trisomy 21.  
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Table 5: Summary of microarray results in 30 study subjects 

Karyotype 

%FISH 
Affymetrix Genome-Wide Human SNP 6.0 BlueGnome CytoChip 

Gain for ch.21 detected 

%Array 

Smooth signal 

of ch.21 
Mean  

log2 
ratio of 

ch.21 

 

Gain for 
ch.21 

detected 

log2 ratio of 

ch.21 

CPB UPB 
 

Log2 
ratio 

 

Allele 
difference 

 

Smooth 
signal 

CN 
calling 

Mean  SD Mean SD 

Negative Controls (2 copies ch.21 in all cells)              

46,XY,del(3)(q29)   N N N N 3 2.025 0.124 0.008 N 0.003 0.058 

46,XX,dup(3)(q26.1),del(8)(p23.2)   N N N N 0 1.980 0.127 -0.010 N 0.015 0.048 

46,XY,dup(16)(q22.2q23.2)   N N N N 4 2.036 0.233 0.009 N 0.009 0.057 

46,XY,dup(10)(p13p15.3)   N N N N 0 1.995 0.386 -0.003    

46,XY,del(18)(p11.2)   N N N N 2 2.016 0.089 0.006    

46,XY,del(8)(p23.1p23.3),dup(8)(p21.1p22)   N N N N 0 1.907 0.123 -0.040    

46,XX   N N N N 0 1.895 0.155 -0.045    

46,XY   N N N N 0 1.941 0.153 -0.026    

46,XX,del(17)(p11.2p12 )   N N N N 3 2.030 0.139 0.010 N -0.024 0.075 

46,XX   N N N N 3 2.028 0.153 0.009 N -0.030 0.059 

46,XY,del(2)(q14.1q14.3),dup(22)(q11.21q11.21)   N N N N 2 2.023 0.121 0.008    

46,XY,dup(5)(q33.3q35.3),del(13)(q34)   N N N N 1 2.014 0.123 0.004    

46,XY,dup(17)(p11.2p12),del(17)(q11.2q12)   N N N N 3 2.033 0.112 0.012 N 0.012 0.041 

Mosaic Tri 21              

mos 47,XX,+21/46,XX 93.6 80.4 Y Y Y Y 100 3.088 0.178 0.347 Y 0.381 0.064 

mos 47,XY,+21/46,XY 50.5 63.2 Y Y Y Y 50 2.498 0.147 0.177 Y 0.216 0.083 

mos 47,XY,+21/46,XY 48 26 Y Y Y N 21 2.212 0.155 0.079 N -0.049 0.102 

mos 47,XX,+21/46,XX 90.5 78.5 Y Y Y Y 100 3.160 0.183 0.365    

mos 47,XX,+21/46,XX 24.9 28 N N S N 7 2.068 0.150 0.025    

mos 47,XX,+21/46,XX 21 19.4 N N N N 0 1.970 0.140 -0.014    

mos 47,XX,+21/46,XX 18.7 19 N N N N 0 1.960 0.151 -0.018    

mos 47,XY,+21/46,XY 29.5  Y Y Y N 20 2.199 0.146 0.074    
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Table 5: Summary of microarray results in 31 study subjects (continued) 

Karyotype 

%FISH 
Affymetrix Genome-Wide Human SNP 6.0 BlueGnome CytoChip 

Gain for ch.21 detected 

% Array 

Smooth signal 

of ch.21 
Mean  
log2 

ratio of 

ch.21 
 

Gain for 

ch.21 

detected 

log2 ratio of 

ch.21 

CPB UPB Log2 

ratio 

Allele 

difference 

Smooth 

signal 

CN 

calling 
Mean  SD Mean SD 

Mosaic Tri 21              

mos 47,XY,+21/46,XY 62 53 Y Y Y Y 66 2.659 0.157 0.227    

mos 47,XX,+21/46,XX 23.2 20 S N Y N 15 2.147 0.141 0.055    

mos 47,XY,+21/46,XY 6.5 17 N N S N 8 2.079 0.131 0.030    

mos 47,XX,+21/46,XX 43 41 Y Y Y Y 28 2.279 0.223 0.101    

mos 47,XY,+21/46,XY 10.4 8.5 N N S N 10 2.099 0.150 0.037    

Positive control (3 copies of ch.21 in all cells)              

47,XX,+21 96.8 89.4 Y Y Y Y 100 3.181 0.272 0.369 Y 0.357 0.047 

47,XY,der(21)(q10;q10) 81.5  Y Y Y Y 51 2.511 0.282 0.177    

47,XY,+21 97.6  Y Y Y Y 100 3.162 0.236 0.365    

47,XX,+21 97.2  Y Y Y Y 100 3.072 0.236 0.342    

46,XX,der(21)(qter→q21::p11.1→qter)   Y Y Y Y 100 3.051 0.188 0.242    

ch.21 = chromosome 21, Tri 21 = trisomy 21, CPB = cultured peripheral blood, UPB = uncultured peripheral blood, CN = copy number, SD = 

standard deviation, Y = yes, N = no, S = suspicious 
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In practice, the manufacturer recommended protocol for detecting mosaicism in a 

specimen is to combine the data collected from all analyses, including the log2 ratios, 

smoothed signals and especially the allelic patterns. By expanding the assessments to 

include each of thesfore data points, the current version of the ChAS software 

consistently allowed for the detection of a minor cell population that was present in 

approximately 20% of cells (20% to 80% trisomic complement)(Figure 2).  
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Figure 2: Composite array results of representative cases having mosaicism for trisomy21. Each box in this figure 

represents a different individual, with a total of 8 patients being shown. The percentage values below the data indicate the level 

of trisomic cells present in each person, with 0% representing an individual having a normal (2 copies) complement for 

chromosome 21 and 100% representing an individual with “complete” trisomy 21. The results of the ChAS findings from 

different analyses are shown, including the log2 ratio (a); the allelic patterns (b) and the smoothed signal (c). The  mean log 2 

ratios (a) are shown as a light blue line in the middle of the marker data values and range from 0 (0% trisomy) to 0.6 (100% 

trisomy). (b). The allele difference track shows allele patterns observed in euploid ( where A allele = 0.5 and B allele = -0.5 

and AA = 1; AB = 0;  and BB = -1) compared to trisomic (AAA = 1.5, AAB = 0.5, ABB = -0.5 and BBB = -1.5) cells. (c) The 

smooth signal of log2 ratio track shows an increase of the signal from 2 to 3, corresponding with 2 to 3 copies of chromosome 

21. 
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For the positive control cases, the SNP array evaluation of 4 of the 5 specimens 

was consistent with the GTG banding karyotypic results. However, one case, who was 

referred for assessment due to a phenotype suggestive of mosaicism (presence of 

hypomelanosis of Ito), had an array result that was discrepant to the findings of the 

conventional cytogenetic analysis. The chromosome analysis showed the presence of 

secondary trisomy for chromosome 21 [der(21)(q10;q10); either an isochromosome or a 

Robertsonian translocation] in each of the 30 metaphase spreads examined (100%). 

Interestingly, the array result was consistent with the presence of trisomy mosaicism for 

both chromosome 14 (62% of cells) and chromosome 21 (51% of cells). To 

confirm/refute these array findings, additional analyses were completed using FISH with 

two probe sets. Probe set one included a probe that was specific for the long arm of 

chromosome 14 (specific for 14q.32; spans the IGH region), with a control probe also 

being evaluated (specific for band 11q13; spans the CCND1 breakpoint region). Probe set 

two included a probe that is specific for band 21q22 (D21S259\D21S341\D21S1432), 

along with a control probe from chromosome 13 (spans the 13q14; RB1locus) (Figure 3). 

An assessment of 500 interphase nuclei per probe set confirmed the presence of 

mosaicism for both chromosomes, with three signals being present for the chromosome 

14 probe in 22% of intephase nuclei and three signals for the chromosome 21 probe in 

81.5% of interphase nuclei. 
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Figure 3: Detection of mosaicism for trisomy 14 and a trisomic dose of 21q. Mosaicism was determined from CN state (1), 

log2 ratio (2), allele difference (3) and smooth signal (4) tracks for chromosome 14 (a) and chromosome 21 (b). Interphase 

analysis on cultured lymphocytes (c), using a locus specific probe mixture for chromosome 14 (green) and for chromosome 11 

(red) showed cells having 3 (lower left) or 2 (upper right) signals for the chromosome 14 probe. Interphase analysis on 

cultured lymphocytes (d), using a locus specific probe mixture for chromosome 21 (red) and for chromosome 13 (green) 

showed cells with 3 (lower right) and 2 (upper left) signals for chromosome 21. (e) Metaphase spread showing a trisomic dose 

of the long arm of chromosome 21 due to a der(21)(q10;q10). 
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A SNP array was also processed using a DNA sample from an individual with 

partial trisomy for chromosome 21, which resulted in her having a trisomic dose of  

21q21 to 21qter (Figure 4).  The array result was consistent with the findings of the GTG-

banding and allowed for refinement of the breakpoint in the rearrangement to band 

21q21.2 (Figure 4).  

 

A potential advantage for using a SNP array was illustrated by a case having 

mosacism with 20% of cells that were trisomic based on the array analysis (Figure 5). In 

this specimen an allelic pattern consistent with the presence of 3 distinct chromosomes 21 

was seen for the proximal long arm markers, with the distal long arm markers showing a 

shift in the allele pattern that could indicate the location of a meiotic recombinational 

event (Figure 5).  

 

The collective information gained from the assessments of the mosaic probands 

and the positive and negative control subjects, was used to determine if the proportion of 

trisomic cells estimated from the SNP array, as measured by the smoothed mean of log2 

ratios of all probes across chromosome 21, correlated with the percentage of trisomic 

cells determined by the “gold standard” FISH methodology (Figure 6). These values were 

positively correlated, with  no significant difference being detected in the  percentage of 

trisomic cells quantified using the SNP array compared to the FISH analysis that was 

completed on uncultured lymphocytes (p-value = 0.80, paired t-test), or on the cultured 

lymphocytes (p-value = 0.30, paired t-test).  
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Figure 4: SNP array result of an individual with partial trisomy for chromosome 21 due to a structural abnormality. 

Note the increased log2 ratio, and smooth signal, and altered allele difference pattern at 21q21.2 (position 24,959,394) (arrow) 

with 3 doses continuing for the rest of the long arm. The SNP array result is in agreement with the findings of the GTG-

banding analysis which showed a partial trisomy, with a breakpoint at 21q21 (as evidenced by the reduced thickness of the 

21q21 dark band in the upper portion of the derivative chromosome 21 when compared to the bottom portion of the derivative 

chromosome).  
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Figure 5: SNP array result of chromosome 21 showing an altered allelic pattern. Probable meiotic recombination events 

involving loci at 21q21.3 (position 29,989,702-31,288,209) (small arrows), and 21q22.12 (position 37,050,935-47,983,657) 

(large arrows) occurred during meiosis I, leading to alterations in the allelic patterns in this individual with 20% of trisomy 

21cells.
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Figure 6: Mean of smoothed log2 ratios of all probes across chromosome 21 and 

percentage of trisomy 21 cells as determined by FISH. The data are shown with the 

mean and SD of the smoothed log2 ratios for the  negative controls (blue), individuals 

with mosaicism for trisomy 21 (red) and positive trisomic controls (green). The blue box 

shows zone of normal copy number (CN of 2), the pink box shows the mosaicism zone 

and the green box shows the zone of complete trisomy 21 (CN of 3). Note the positive 

correlation between mean of the smoothed log2 ratios and percentage of trisomic cells 

(Pearson correlation, r = 0.88, p-value <0.00001). 
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The BAC array CGH platform was used to process a total of 10 DNA samples, 

including 6 negative control samples, 3 samples from individuals with mosaicism for 

trisomy 21 and 1 sample from an individual with full trisomy 21 (Table 5 and Figure 7). 

The BAC array provided findings that were consistent with those of conventional G-

banding results for each of the negative control cases, with no gain of chromosome 21 

being detected in any of these samples. A gain of chromosome 21 was detected in the full 

trisomy 21sample and in 2 of the 3 mosaic cases. The mosaic case that was not readily 

identified had 26% trisomic cells in the FISH assay and did show a subtle deviation of the 

log2 ratio, but this variance was too equivocal to allow for clear categorization as a 

mosaic case (Figure 7b). This same patient was correctly categorized as a mosaic using 

the SNP array.   

  

 A comparison of the potential correlation between trisomic values detected using 

the BAC array compared to FISH analyses and the SNP array was completed (Figure 8).  

The estimates of trisomic cells present in individuals (based on the mean log2 ratio of all 

probes across chromosome 21) from both array platforms were positively correlated with 

the values obtained in the FISH assay. Furthermore, for 2 of the 3 mosaic cases evaluated 

with both platforms, there was good agreement for the estimated proportion of trisomic 

cells present.  
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Figure 7: Array CGH results for chromosome 21 using a BAC array platform. This figure shows the results from 5 

subjects including: (a) an individual with a normal chromosome 21 complement (log 2 ratio of 0 as expected with 2 copies); 

(b) an individual with 26% trisomic cells determined by FISH on uncultured lymphocytes, which shows subtle deviations from 

the log2 ratio (suggestive of mosaicism but not definitive); (c) an individual with 50% trisomic cells as  determined using FISH 

on uncultured lymphocytes, which shows gains (log 2 ratio of 0.3 or more) for several of the BACs evaluated from 

chromosome 21 (green line);  (d) an individual with 80% trisomic cells on uncultured lymphocytes, showing a value consistent 

with “full” trisomy  21; and (e) an individual with “full” trisomy 21 that has a log 2 ratio  consistent with trisomy 21 (but less 

than the theoretical value of 0.58 as expected for 3/2 copies).

(a) (b) (c) 

(d) (e) 
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Figure 8: Comparison of the proportion of trisomic cells detected using SNP array, 

BAC array and FISH methodologies. The mean log2 ratios for chromosome 21 from 

SNP (○) or BAC (∆) arrays are presented on the X axis, with the percentage of trisomic 

cells as determined using FISH, being presented on the Y axis. The data points shown for 

each individual are the mean values for the negative controls (blue), individuals with 

mosaicism for trisomy 21 (red) and positive controls (green). Note the nearly parallel 

trend lines of the SNP (dashed line) and BAC (solid line) platforms.   
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Discussion 

 

 These studies have shown that array-based technology has both strengths and 

weaknesses in its ability to detect the presence of chromosomal mosaicism. Using the 

default software analysis setting for CN state, we were unable to detect trisomic cell 

populations that were present in less than 30%, due to the software categorization of log2 

ratio changes from 0-30% as copy number neutral findings. Thus, it is important to 

include analyses of mosaic cases in laboratory validation studies to ensure that the 

software criteria are defined in a manner that is congruent with the level of detection for 

mosaicism that is desired by the lab. In addition to log2 ratio values, SNP arrays provide 

information about the allelic patterns present in each case. While these patterns were very 

useful for confirming suspected cases of mosaicism, in our experience the use of allele 

pattern assessments did not allow for the recognition of additional cases that were 

undetected using the log2 ratios, or the smoothed signal values.   

 

 For the SNP microarray platform (Affymetrix 6.0) and analysis software (ChAS) 

used, the smooth signal assessment tool provided the most efficient means for detecting 

mosaicism. Based on the collective information gained from all assessment tools for the 

13 cases evaluated, no significant difference was detected in the quantitative percentage 

of trisomic cells estimated using microarray compared to FISH technologies. However, 

categorically, the microarray studies resulted in 2 false negative diagnoses (with both 

cases having less than 20% trisomic cells) and 2 cases that would have been misclassified 



www.manaraa.com

 

59 
 

as “full” trisomy that were truly mosaic (80% or more trisomic cells). Furthermore, for 3 

cases (2 of which had approximately 10% trisomic cell populations), detection of the 

trisomic cell line was subtle/equivocal and limited to an assessment of the smooth signal 

value and would have been missed using the other analysis assessments. Nonetheless, 

these specimens were distinguished as candidates for additional reflex testing with FISH 

to confirm/refute the possible presence of low level mosaicism. However, without 

experience in scoring mosaic cases, these subtle results may well have been misclassified 

as normal, which would have reduced the sensitivity to 0.62. Therefore, as noted above, it 

is important that geneticists who are interpreting the results of microarray findings gain 

experience in the assessment of cases having mosaicism to improve the likelihood that 

they will recognize cases.  

 

There are several explanations for the incongruity between microarray and FISH 

and/or G-banding studies. Firstly, the DNA used for the microarray studies is collected 

from all types of leukocytes, while the G-banding studies are performed on T 

lymphocytes, (following ohytohemaglutinin [PHA] stimulation). Secondly, it is possible 

that in vitro selective growth differentials contribute to the discrepancy. Thirdly, the cells 

evaluated in the microarray studies represent a composite of the total cell population 

(average) value, whereas the FISH analyses allow for the recognition of single cell 

aberrations, making FISH the more sensitive technology for detection of mosaicism if a 

known target can be anticipated. 
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Using the current software analysis tool sets supplied by the array vendors, this 

study showed that levels of mosaicism that were greater than 15% to 20% were 

consistently detected (Figure 2). This result is in close agreement with the findings of 

previous investigators who denoted the ability to detect cell mixtures synthesized to have 

10% to 20% “mosaicism” using array CGH platforms (Ballif et al., 2006; Cheung et al., 

2007; Hoang et al., 2007). In one investigation, a SNP array was reported to be have the 

ability to detect  mosaic cell lines that were present in as few as 5% of the total cell 

population (Conlin, et al., 2010). These investigators suggested that a key advantage of 

using a SNP array for mosaicism detection is that one has allelic patterns, as well as copy 

number changes, to aid in the interpretation of cell lines having mosaicism (Conlin, et al., 

2010).   

 

In this study, we demonstrated that both the BAC and SNP platforms could detect 

mosaicism, with their results being consistent for two of the three cases evaluated using 

both platforms. This inability to identify the one case having mosaicism using a BAC 

array could be explained by the smaller number of probes analyzed for chromosome 21 

(52 BAC clones versus 24,170 SNP and CN probes). However, this study was not 

designed to compare the performance between SNP and BAC arrays, since the number of 

study subjects (31 cases versus 10 cases) varied between platforms, being limited to only 

3 cases having mosaicism for the BAC array (due to cost limitations). 
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 While limitations of arrays for identifying mosaicism were observed in this study, 

it also showed the strength of array-based technology to identify previously unrecognized 

chromosomal mosaicism. Specifically, the array studies allowed for the detection of 

mosaicism for trisomy 14 that was not identified in a conventional GTG-banding study. 

However, an assessment of the percentage of  trisomic cells present in this specimen 

varied between the FISH and SNP array assays, with the percentage in arrays being 

higher for trisomy 14 (62% compared to 22%) and lower for trisomy 21 (51% arrays; 

81.5% FISH; 100% GTG-banding). Possible explanations for the observed variations in 

frequencies of cell lines include: (1) selective growth pressure against the trisomy 14 

cells in the in vitro culture system used for the FISH and GTG-banding studies;  (2) a 

higher proportion of trisomy 14 complements in the total leukocyte cell population when 

compared to the T-cell population, the latter of which is preferentially present in the in 

vitro cultures due to stimulation using PHA; or (3) a potential influence of having used an 

archival heparinized blood specimen for the DNA extraction. 

 

One major advantage for using a SNP array is that, when combined with parental 

studies, one can infer the origin of the segregation error (i.e., meiosis I versus meiosis II 

and mitosis) that resulted in the presence of the extra chromosome in the trisomic 

individuals. However, these patterns were difficult to distinguish when the percentage of 

trisomic cells was low. When the proportion of trisomic cells was 50% or more, one 

could confidently differentiate between meiosis I and meiosis II/mitosis errors. Also, an 

analysis of alleleic patterns can allow for the recognition of recombination events, which 
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can be helpful for confirming the presence of mosaicism in specimens having less than 

50% trisomic cells, as seen in Figure 5.  

 

In summary, our study demonstrates that array-based technology is effective for 

detecting mosaicism that is present in 20% or more cells. However, FISH remains the 

“gold standard” for mosaicism detection and should be considered for confirmation when 

low level mosaicism is suspected and/or to confirm/refute equivocal array-based results. 
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Chapter 3 

 

Chromosome-specific telomere length profiles in euploid and trisomic cells obtained 

from individuals having mosaicism for Down syndrome  

 

Introduction 

 

 The growing number of elderly individuals in our population has caused an 

increased concern about the management of future healthcare needs and costs. It has been 

estimated that the number of people aged 65 years or older will increase from 

approximately 35 million in 2000 to 71 million in 2030, with the number of people who 

are age 80 years or older being expected to increase from 9.3 million in 2000 to 19.5 

million in 2030 (www.cdc.gov/mmwr/).This increase in our need for services related to 

aging individuals underscores the necessity to have a better understanding of the 

mechanisms of aging and age-related health conditions, with the ultimate goal of  

improving our ability to diagnosis, treat and possibly prevent age-related diseases such as 

cancers, and neurodegenerative diseases (i.e., Alzheimer disease). To better understand 

the mechanisms underlying aging and age-related diseases, different study models have 

been utilized. For example, investigators have studied biological measures collected from 

centenarians or other older individuals compared to those observed in young individuals. 

However, interpretation of the results of these studies can be confounded by differences 
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in genetic backgrounds, environmental exposures and co-existing health conditions. One 

approach that can be used to test the contribution of genes on the aging phenotype is to 

study individuals who have mutations that cause them to have premature aging, such as 

Hutchinson–Gilford Progeria syndrome and Werner syndrome (Crabbe, et al., 2007; 

Ariyoshi, et al., 2007; Cao, et al. 2011). Individuals with Down syndrome have also been 

observed to age prematurely. In particular, people with Down syndrome have an 

increased risk for developing an early onset of Alzheimer disease (Potter, 1991; Roth et 

al., 1996). 

  

  The results of the many studies focused on understanding aging have shown that 

both genetic and environmental factors play an important role in the etiology of normal 

aging and the acquisition of age-related conditions in humans. One genetic factor that has 

been implicated in the aging process and development of age-related diseases is the 

shortening of telomeres. A telomere is a specialized structure at the end of a chromosome 

that consists of tandem repeats (TTAGGG/CCCTAA)n and telomere associated proteins, 

including  TRF1, TRF2, TIN2, TPP1, Rap1 and POT1 (Aubert and Lansdorp, 2008). 

Telomeres play an important role in maintaining structural integrity of chromosomes by 

keeping the chromosome ends intact and preventing the single stranded tip that results 

from incomplete replication from being recognized as DNA damage (Blackburn, 2005). 

 

 The protective function of the telomere was first recognized by Muller (1938) and 

McClintock (1941). McClintock noted that without a telomere, a chromosome’s ends 
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would fuse and causes genomic instability. In 1961, Hayflick and Moorhead 

demonstrated that cultured cells have a limited number of divisions they complete before 

entering a senescence phase. This phenomenon is known as the “Hayflick limit”. In 1973, 

Olovnikov was the first to recognize the “end replication problem”. He proposed that 

following each round of replication, cells lose small segments of DNA due to DNA 

polymerase being unable to fully replicate the chromosome ends. This phenomenon is 

ultimately thought to lead to cell death when telomeres reach critically short lengths. At 

the cellular level, the mechanism whereby telomere shortening triggers replicative 

senescence and cell death is unclear. It has been speculated that telomere shortening may 

trigger a TP53 DNA damage response (Davis et al., 2003).  

  

 Telomere attrition has been conjectured to play a causal role in aging (Mayer  et 

al., 2006) and has also been associated with a number of health conditions, including, but 

not limited to, neoplasms (de Lange, 1994; Shay, et al., 1993;Autexier and Greider, 1996; 

Blackburn, 2005; Gerashchenko, 2010; Ma, et al., 2011, Donate and Blasco, 2011); 

atherosclerosis (Benetos et al., 2004); heart failure (Wong et al., 2008); obesity (Valdes, 

et al., 2005); rheumatoid arthritis (Schonland et al., 2003); stress (Epel et al., 2004); 

chronic schizophrenia (Yu et al. 2008); dyskeratosis congenita (Vulliamy et al., 2004); 

Alzheimer disease (Panossian et al. 2003); premature aging syndromes (such as 

Hutchinson–Gilford Progeria syndrome and Werner syndrome [Crabbe et al., 2007; 

Ariyoshi et al., 2007; Cao, et al., 2011]); chromosome instability syndromes (such as 

ataxia telangiectasia, Bloom syndrome and Fanconi anemia [reviewed in Callén and 
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Surrallés, 2004]); and Down syndrome (Vaziri et al., 2003; Jenkins et al., 2006; Jenkins 

et al., 2008). Telomere length has also been speculated to influence mortality (Cawthon, 

et al., 2003). 

 

 In most somatic cells, the telomere shortens with each cell division due to the end 

replication problem. This shortening is thought to occur in cells that lack telomerase. 

Telomerase, which was discovered by Blackburn and colleagues (Greider and 

Blackburn,1985; Shampay and Blackburn 1988; Greider and Blackburn, 1989), is a 

specialized enzyme that maintains telomere length by adding TTAGGG repeat sequence 

to the 3' end of DNA strands in the telomere regions, thus maintaining telomere length 

(reviewed in Chan and Blackburn, 2004; Aubert and Lansdorp 2008). Telomerase 

activity is present in germ cells, but not in most somatic cells, leading to somatic cells 

having a limited lifespan. However, in some cell types, telomere length can be 

maintained by an alternative pathway (ALT) involving homologous recombination 

between telomeric or subtelomeric sequences (reviewed in Mefford and Trask, 2002). 

 

 Besides the end replication problem, investigators have shown that oxidative 

damage of the telomeric sequence could be a major cause of telomere shortening. This 

finding was supported by antioxidant treatment with a free radical scavenger, which was 

able to reduce telomere shortening in cultured fibroblasts (Von Zglinicki, 2000). One of 

the key enzymes involved in free-radical metabolism is superoxide dismutase (SOD-1), 

which is encoded by the SOD-1 gene on chromosome 21. In individuals with Down 
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syndrome, SOD-1 activity is increased due to triplication of chromosome 21, with this 

increase being disproportionate to the activity of the downstream enzymes responsible for 

removal of hydrogen peroxide (e.g., glutathione peroxidase). It has been speculated that 

this imbalance may contribute to premature telomere damage in trisomy 21 cells by an 

accumulation of hydrogen peroxide.  

 

 To date, only a few investigators have studied the relationship between telomere 

length and Down syndrome. Using a terminal restriction fragment (TRF) telomere assay, 

which provides an overall average telomere length, Vaziri et al. (1993) observed a 

significantly higher rate of telomere loss (133 ± 15 bp/year) in people having Down 

syndrome compared with age-matched controls (41 ± 7.7 bp/year). In addition, 

individuals with Down syndrome who have dementia/Alzheimer disease or mild 

cognitive impairment have been reported to have shorter telomeres than individuals with 

Down syndrome without these conditions (Jenkins et al, 2006; Jenkins et al., 2008). One 

limitation in interpreting the results from these previous studies is that the observed 

differences in telomere length (which is a heteromorphic trait) reflect variations between 

unrelated individuals who, in addition to having Down syndrome, also have differences 

in their genetic make-up and environmental exposure histories.  

  

 Twin studies, comparing identical to non-identical twins or identical twins who 

are discordant for a phenotype/exposure, are one of the most powerful model systems for 

teasing apart the contribution of genetic versus environmental influences on a trait. 
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Another interesting experimental approach for recognizing genetic differences 

attributable to genetic imbalance is to study individuals having mosaicism, because an 

individual with mosaicism has 2 or more genetically distinct cell lines that develop within 

a single zygote and differ only by chromosomal nondisjunction. Despite it is rarity, 

mosaicism for trisomy 21 is a fascinating condition to study for gaining insight about 

aging and Alzheimer disease since individuals with mosaicism have two types of cells 

(i.e., euploid and trisomy 21) that are identical for environmental exposure and nearly 

identical for their genetic background (i.e., only different by the  number of chromosomes 

21).  

 

 Therefore, this study was performed to evaluate the impact of having a trisomic 

dose of chromosome 21 on telomere length. By comparing trisomic to euploid cells from 

individuals having mosaicism for Down syndrome, one could minimize inter-individual 

differences arising from other genetic/environmental influences. In addition, by utilizing 

FISH methodology with a telomere-specific probe on metaphase chromosomes, 

combined with comparative genomic hybridization (CGH) technology, one can compare 

“chromosome-specific” telomere lengths from euploid cells to trisomic cells obtained 

from individuals having mosaicism for trisomy 21. Lastly, while there have been 

previous reports of telomere lengths in older individuals having Down syndrome, there 

have been no reports of the telomere lengths in children. The data derived from this study 

allowed for a direct testing of the following hypotheses: (1) Differences in telomere 

length can be detected between cell types based on their genetic make-up; (2) Telomeres 
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are shorter in cells having a trisomic dose of chromosome 21 compared to cells having a 

euploid (2 copies) dose; (3) Telomere attrition can be observed as a biological change 

that occurs during early childhood in a cell having a trisomy 21 complement; (4)  

Telomere attrition associated with trisomy 21 affects all chromosome equally, rather than 

having a targeted effect on a subset of chromosomes. 
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Materials and Methods 

 

Study Participants 

Participants were recruited through the National Down Syndrome Congress 

(NDSC) meeting (Washington D.C., 1995), announcements made in national and local 

Down syndrome support groups, newsletters, the International Mosaic Down Syndrome 

Association (IMDSA) (via their website and IMDSA conferences) and through visits for 

genetic counseling. The only inclusion criterion for study participation was that the 

individual had a confirmed diagnosis of mosaicism for trisomy 21.  All families have 

given informed consent to participate in this study, which has been approved by the 

Virginia Commonwealth University Institutional Review Board (protocol #179). 

 

Cell Cultures 

Duplicate stimulated lymphocyte cultures were established and harvested 

according to standard protocols [RPMI 1640 media, supplemented with 15% fetal bovine 

serum (FBS) and phytohemaglutinin (PHA)]. A total of 72 hours after culture initiation, 

the lymphocyte cultures were harvested as described previously, with colcemid being 

added 15 minutes prior to harvest to enrich the specimens for cells that were in the 

mitosis portion of the cell cycle (Leach and Jackson-Cook, 2001).  

 

The lymphocyte chromosome preparations that were used in this study were 

obtained from archival cell pellets that were harvested from 2004 to 2009. These archival 
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pellets were kept in a modified Carnoy’s fixative (3 parts of methanol and 1 part of acetic 

acid) at -20
o
C.  To reduce cytoplasm, which might compromise probe hybridization, the 

cell pellets were washed in Carnoy’s fixative twice before the cell solutions were dropped 

onto the slides using a Thermatron (temperature of 22±1C and humidity of 48±2%). The 

slides were reviewed with a phase contrast/bright field microscope to ensure that the 

quality of the preparation was adequate for the FISH study (number of 

metaphases/interphase nuclei and quality of preparation [lack of cytoplasm]). After 

review, the slides were placed on a hot plate at 60C for an hour, followed by aging at 

room temperature for 1-2 weeks. Alternatively, rather than aging at room temperature, for 

a portion of the cells the aging was induced by soaking the slides in 2xSSC for 10 

minutes prior to the FISH experiment. If cytoplasm was present, the slides were soaked in 

Carnoy’s fixative for 1 additional hour before proceeding with probe hybridization. 

 

Chromosome-Specific Telomere Length Assay 

Metaphase chromosomes were hybridized with a telomere-specific FITC-labeled 

synthetic peptide nucleic acid (PNA) probe following the manufacturer’s protocol 

(DakoCytomation, Denmark). In addition, an FITC-labeled probe that is specific for the 

pericentromeric region of chromosome 2 was simultaneously hybridized to the metaphase 

spreads as a control (and to serve for standardization of intensity values from cell to cell) 

(Mayer et al., 2006). Briefly, slides were fixed in cold Carnoy’s fixative for 1 hour. After 

air-drying, the slides were rinsed with 1xTBS (Tris-Buffered Saline, pH 7.5) for 2 

minutes, fixed in 3.7% formaldehyde in 1xTBS for 2 minutes and then rinsed (twice in 
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1xTBS for 5 minutes). The slides were then immersed in a pre-treatment solution 

containing proteinase K, for 10 minutes, rinsed (twice in 1xTBS for 5 minutes) and 

dehydrated (using a cold ethanol series [70%, 85% and 100%]). After air-drying, a 

cocktail probe mixture (11µl of FITC-labeled telomere specific probe and 1 µl of FITC-

labeled centromere-2 probe  per subject [a half slide area]) was added to each slide and 

the probe and metaphase spreads co-denatured in a thermocycler at 80
o
C for 3 minutes. 

After hybridization in a dry hybridization chamber at room temperature for 2 hours, the 

excess and unbound probe was removed by rinsing (once in a manufacturer provided 

rinse solution at room temperature for 1 minute, followed by 5 minutes in a manufacturer 

provided wash solution at 65
o
C). Following serial dehydration in a cold ethanol series 

(70%, 85% and 100%), the slides were air-dried and counterstained with a 5:1 

DAPI/propidium iodide solution. 

 

The telomere lengths of each chromosome were assessed using a semi-

quantitative FISH method (CGH software from Applied Imaging Cytovision System) as 

described by Leach et al. (2004). Briefly, three images were captured with a CCD camera 

for each metaphase: (1) a reverse DAPI image, which allows for chromosome 

identification and subsequent karyotyping; (2) a test/ FITC image, showing telomeric and 

centromeric probe signals; and (3) a reference/ propidium iodide image that allows for 

visualization of the chromosome body. Fluorescent intensities obtained from the “test” 

and “reference” images were used for calculating the ratio profiles of relative telomere 

intensity for each chromosome arm. Overlapping telomeres or telomeres that were in 
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close proximity were excluded from the analysis. For each person the intensity values 

were averaged over 20 homologs from 10 euploid cells and 20 homologs from trisomic 

cells (30 homologs for chromosome 21). A representative metaphase stained with 

telomeric probe and centromeric probe for chromosome 2 with DAPI/PI counterstain is 

shown in Figure 9. 

  

Cen-2 intensities of all individuals were standardized to a value of 4, and the 

respective telomere lengths for each person adjusted proportionally. All statistical 

analyses were performed using the R statistical software program. 
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Figure 9: Representative images showing FISH-based quantification of 

chromosome-specific telomere intensity. Image (a) is a metaphase spread stained with 

DAPI, which allows for chromosome identification as shown in a reverse DAPI image 

(d). Image (b) shows the FITC-labeled PNA telomeric signals and the PNA centromeric 

signal for chromosome 2 (test image). Frame (c) shows this same metaphase as it appears 

with a PI-stain (reference image). For each chromosome, CGH software transformed the 

intensities of telomere signals into ratio profiles averaged over the 20 (or 30) homologs. 

These ratios were based on the florescence intensities of the test and reference images. As 

seen in (e), telomeres of chromosome X, as identified by the inverted DAPI banding 

pattern, showed a short arm telomere relative fluorescence unit (RFU) value of 4.25, 

while the long arm telomere value was 5.00. Note that signal intensities between the 

replicate sister chromatids of each homolog were very similar. 

 

 

(a) (b) 

(c) (d) 

(e) 
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Results 

 

Chromosome-specific telomere length assays were performed on lymphocyte 

samples obtained from 24 individuals with mosaicism for trisomy 21, including 12 males 

and 12 females. These study participants ranged in age from 3 weeks old to 28 years old, 

with a median age of 3.5 years old. The age, gender and percentage of trisomy 21 cells 

for each proband are given in Table 6. The distribution of the percentage of trisomic cells 

and the age of all study subjects are shown in Figure 10.   

 

Overall telomere length in euploid and trisomic cells 

Estimates of the overall telomere intensity in each individual were obtained by 

averaging the intensity values of all chromosomes, except chromosome Y (which was 

excluded from the analysis since the females would not have a correlate chromosome). 

This analysis showed no significant correlation between overall telomere intensity values 

and the percentage of trisomic cells, which was log transformed values present in the 

probands (Pearson correlation, r = -0.15, p-value = 0.485). In addition, no correlation 

between overall telomere intensity values and age was observed in the study cohort, 

which was comprised of predominantly young individuals (Pearson correlation, r = -

0.117, p-value = 0.587) as shown in Figure 11a and 11b. 

 

 

 



www.manaraa.com

 

76 
 

Table 6: Age, gender and percentage of trisomy 21 cells of 24 study subjects 

 

 

 

Case Age Gender Percentage of trisomy 21 cells 

1 0.4 F 24.9 

2 4.0 F 19.0 

3 0.1 M 50.5 

4 12.0 F 26.5 

5 3.0 M 23.8 

6 0.3 M 48.0 

7 2.0 F 9.4 

8 28.0 F 90.5 

9 5.0 M 12.0 

10 25.0 M 8.4 

11 14.0 F 10.3 

12 7.0 F 91.6 

13 3.0 M 29.5 

14 11.0 F 17.6 

15 0.9 M 62.0 

16 4.0 M 10.8 

17 0.3 F 56.8 

18 0.5 M 10.9 

19 11.0 M 6.55 

20 21.0 F 92.7 

21 2.5 F 43.0 

22 3.0 F 23.2 

23 18.0 M 11.0 

24 2.9 M 11.7 
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Figure 10: Distribution of the percentage of cells having trisomy 21 and age for the 

24 study subjects. Note the skewing of distribution of trisomic cells toward low levels 

(less than 20%) (a), and the skewing of the study participants’ age toward very young 

individuals (less than 5 year old) (b). 
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To test the primary hypothesis of this study, the overall telomere intensity values 

between euploid and trisomic cells “within a person” were compared. Telomere 

intensities for the short arm of the 23 different chromosomes (1-22 and X) in females and 

24 different chromosomes (1-22, X and Y) in males were compared between the two cell 

types using a paired t-test. Analyses were performed in the same manner for long arm of 

the chromosome. A Bonferroni correction for multiple comparisons was applied for these 

tests [the p-value was set at < 0.001 (i.e., 0.05/46 and 0.05/48)]. The mean, standard 

deviation, mean of the differences and p-values for these individual-specific comparisons 

are summarized in Table 7. A significant difference between telomere intensity values 

present in euploid compared to trisomic cells was observed for 7 individuals for the short 

arms of chromosomes and in 13 individuals for the long arms of chromosomes. A total of 

7 individuals had significantly different values for both their short arms and long arms. 

For each of these cases, there was consistency in the directionality of the observed 

differences (i.e., shorter in the trisomic cells for both long arm/short arm or longer in the 

trisomic cells for both long arm/short arms). No clear ascertainment pattern was observed 

for the probands who had shorter telomeres in their trisomic cells versus those who had 

longer telomeres in their trisomic cells (not apparently related to age or the proportion of 

trisomic cells).    
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Figure 11: Overall mean telomere intensity compared to (a) the probands’ 

percentage of cells with trisomy 21 and (b) the proband’s age. Each data point 

represents an individual (○). No significant correlation was observed for the trisomic 

percentage (Pearson correlation, r = -0.15, p-value = 0.485) or age (Pearson correlation, r 

= -0.117, p-value = 0.587). 
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Table 7: Telomere intensity values in euploid compared to trisomic cells obtained from lymphocytes of individuals having mosaicism for 

trisomy 21. 

Age 

(years) 

Short arm Long arm 

Euploid cells Trisomy 21 cells Mean of the differences 

(e-t ) 

p-value 
Euploid cells Trisomy 21 cells Mean of the difference 

(e-t) 

p-value 
Mean SD Mean SD Mean SD Mean SD 

0.1 2.883 0.544 3.188 0.809 -0.305 0.027 2.789 0.416 2.933 0.548 -0.144 0.095 

0.3 2.780 0.519 2.223 0.361 0.556 <0.0005 2.568 0.502 2.148 0.405 0.420 <0.0005 

0.3 4.916 1.149 4.349 1.068 0.568 0.006 4.526 1.097 4.013 0.939 0.513 0.003 

0.4 3.630 0.846 3.851 0.937 -0.221 0.137 3.707 0.883 3.397 0.774 0.311 0.957 

0.5 4.883 1.287 4.589 1.147 0.294 0.092 4.443 0.860 4.551 0.923 -0.108 0.490 

0.9 4.206 1.015 3.883 1.004 0.322 0.027 4.008 0.816 3.610 0.838 0.399 0.004 

2.0 2.848 0.792 3.376 0.829 -0.529 <0.0005 2.469 0.495 3.152 0.745 -0.683 <0.0005 

2.5 2.774 0.544 2.100 0.647 0.674 <0.0005 2.489 0.419 1.739 0.237 0.750 <0.0005 

2.9 4.297 1.019 4.485 0.979 -0.189 0.078 3.993 0.740 3.954 1 0.009 0.956 

3.0 2.000 0.352 2.155 0.277 -0.154 0.017 2.021 0.272 2.249 0.392 -0.228 0.0004 

3.0 6.587 1.374 5.856 1.397 0.731 0.058 6.166 1.379 5.608 1.256 0.558 0.076 

3.0 3.559 0.504 2.666 0.482 0.892 <0.0005 3.227 0.556 2.606 0.568 0.622 <0.0005 

4.0 2.917 0.443 2.580 0.412 0.337 0.001 2.857 0.369 2.472 0.361 0.385 <0.0005 

4.0 3.157 0.733 2.764 0.472 0.394 0.006 3.229 0.705 2.565 0.435 0.664 <0.0005 

5.0 4.256 1.009 4.485 0.979 -0.228 0.034 3.956 0.733 3.984 1 -0.0282 0.870 

7.0 2.363 0.586 2.917 0.523 -0.554 <0.0005 2.291 0.389 2.678 0.387 -0.389 <0.0005 

11.0 3.426 0.811 2.737 0.681 0.690 <0.0005 3.296 0.688 2.581 0.550 0.716 <0.0005 

11.0 2.533 0.527 2.879 0.741 -0.345 0.001 2.410 0.592 2.844 0.832 -0.434 0.036 

12.0 2.759 0.432 3.575 0.597 -0.816 <0.0005 2.646 0.490 3.415 0.497 -0.769 <0.0005 

14.0 2.295 0.589 2.197 0.337 0.098 0.249 2.019 0.352 2.090 0.390 -0.070 0.332 

18.0 2.948 0.750 3.360 1.819 -0.412 0.052 2.575 0.492 2.942 0.625 -0.368 0.0004 

21.0 2.819 0.621 3.166 0.702 -0.347 0.029 2.779 0.740 2.983 0.493 -0.204 0.210 

25.0 2.887 0.909 2.795 0.568 0.091 0.606 2.577 0.524 2.846 0.614 -0.269 0.0003 

28.0 2.266 0.412 2.730 0.565 -0.464 0.001 2.102 0.324 2.552 0.488 -0.450 <0.0005 
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Chromosome-specific differences in telomere length 

 The telomere intensity values of each of the autosomal and sex chromosomal arms of all 

individuals (n = 24 for chromosomes 1-22 and X; n = 12 for chromosome Y) were visualized 

using boxplots of the raw data for euploid and trisomic cells (Figure 12). In this figure, telomere 

intensities were not equal among all chromosome arms. The shortest telomeres were found on 9q 

for both trisomic and euploid cells, with 1p, 2q, 4p, 16q, 17p, 17q, 19p and 22q also tending to 

have relatively short telomeres.  The longest telomeres were found on 3p for both trisomic and 

euploid cells, with the Y chromosome also tending to have longer telomeres in the males 

evaluated. 

 

A striking similarity of the telomere length profiles of the euploid and trisomic cells was 

also observed (Figure 13a). The difference in telomeric values in the euploid compared to 

trisomic cells resulted in positive values (shorter in trisomic cells) for 26 chromosomal arms and 

negative values (longer in trisomic cells) for 21 chromosomal arms (Figure 13b). However, the 

majority of these values were not significant using a paired t-test, except for the difference for 

2q, and 6q (Table 8). However, if one applies a Bonferroni correction for multiple tests (48 

tests); none of the observed difference values reach statistical significance. 
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Figure 12: Boxplot distribution of chromosome-specific telomere lengths in euploid and trisomic cells of all study 

subjects (n=24). The data for the individual chromosomes in euploid cells (light blue = short arm, pink= long arm) and 

trisomic cells (dark blue =short arm, red = long arm) is shown by the minimum (lower bar), 25
th

 percentile (lower box 

boundary), median (line), 75
th

 percentile (upper box boundary) and maximum (upper bar). 
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Figure 13: Mean telomere lengths in euploid and trisomic cells of all study subjects (n=24). (a) The data from individual 

chromosome arms in euploid cells (gray) and trisomic cells (black) reveal a nearly parallel course for all chromosomes. (b) The 

difference (euploid-trisomic) in telomere intensity values are shown for each chromosome. 
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Table 8: Chromosome-specific telomere lengths in euploid and trisomy 21 cells obtained from lymphocytes of individuals with mosaicism for 

Down syndrome (n=24)

Chromosome 

Short arm Long arm 

Eup cells Tri21cells Mean difference (e-t) 

 

p-value  Eup cells Tri 21 cells Mean difference (e-t) 

 

p-value 

Mean SD Mean SD Mean SD Mean SD 

1 2.381 0.471 2.314 0.431 0.067 0.532 3.554 0.7250 3.657 0.687 -0.103 0.562 

2 3.474 0.682 3.405 0.838 0.068 0.683 2.392 0.376 2.160 0.463 0.231 0.044 

3 4.300 0.899 4.391 0.920 -0.090 0.635 3.463 0.685 3.303 0.623 0.160 0.327 

4 2.471 0.380 2.593 0.423 -0.122 0.317 3.753 0.649 3.767 0.736 -0.013 0.935 

5 3.166 0.589 2.972 0.579 0.194 0.197 3.081 0.485 3.006 0.506 0.074 0.538 

6 3.448 0.553 3.658 0.802 -0.211 0.181 3.518 0.707 3.220 0.641 0.299 0.049 

7 2.885 0.359 2.760 0.569 0.125 0.238 3.331 0.615 3.132 0.512 0.199 0.232 

8 3.418 0.554 3.608 0.733 -0.190 0.198 2.798 0.499 2.672 0.556 0.126 0.282 

9 4.051 0.697 3.868 0.669 0.183 0.285 2.303 0.444 2.214 0.413 0.090 0.310 

10 3.585 0.572 3.698 0.792 -0.113 0.441 2.856 0.512 2.845 0.590 0.011 0.931 

11 2.855 0.472 2.843 0.489 0.012 0.912 3.454 0.669 3.685 0.814 -0.231 0.172 

12 3.146 0.636 3.081 0.633 0.065 0.702 2.988 0.509 3.031 0.528 -0.043 0.752 

13 3.371 0.615 3.458 0.821 -0.087 0.574 3.467 0.619 3.509 0.859 -0.041 0.818 

14 3.233 0.741 3.284 0.782 -0.050 0.769 3.057 0.500 2.972 0.589 0.085 0.568 

15 3.242 0.964 3.166 0.603 0.075 0.743 3.469 0.659 3.550 0.773 -0.081 0.699 

16 2.621 0.471 2.568 0.457 0.053 0.628 2.562 0.462 2.628 0.519 -0.066 0.578 

17 2.806 0.651 2.748 0.611 0.057 0.738 2.612 0.396 2.547 0.565 0.064 0.611 

18 3.810 0.684 3.691 0.799 0.120 0.503 3.768 0.579 3.785 0.745 -0.017 0.923 

19 2.513 0.441 2.550 0.555 -0.036 0.784 2.988 0.483 3.293 0.991 -0.304 0.188 

20 3.313 0.480 3.283 0.667 0.030 0.861 2.704 0.311 2.672 0.470 0.032 0.770 

21 3.655 0.829 3.816 1.240 -0.161 0.548 3.012 0.553 2.950 0.649 0.063 0.718 

22 3.851 1.306 3.660 1.120 0.191 0.465 2.490 0.430 2.560 0.517 -0.070 0.475 

X 3.600 0.851 3.420 0.681 0.180 0.352 3.277 0.705 3.281 0.844 -0.005 0.982 

Y 4.269 0.473 4.520 1.345 -0.251 0.470 3.387 0.710 3.758 0.737 -0.371 0.124 
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Discussion 

 

Telomere shortening has been previously observed in older individuals with 

Down syndrome, compared to normal age-matched controls, using terminal restriction 

fragment (TRF) methodology (Vaziri et al., 1993). The TRF assay is one of the first 

techniques used to assess telomere length. Based on the fact that that telomeres lack 

cleavage sites for restriction enzymes, the TRF assay is implemented by cutting 

genomic DNA using a common 4 base-cutter restriction enzyme, followed by gel 

electrophoresis and hybridization to a probe with telomere specific sequence, to 

obtain an average (pooled over all chromosomes) telomere length based on the size 

parameters of the resulting DNA smear. However, if a subset of chromosomes has 

short telomeres, or possibly have elongated telomeres, this information could be 

missed using the TRF assay. Therefore, in this study, we elected to investigate the 

length of telomere repeats using a chromosome-specific assay. Also, by studying 

individual chromosome arms in people who have mosaicism for trisomy 21, we were 

able to measure telomere lengths in normal and trisomic cells obtained from the same 

individual, thereby controlling for the potentially confounding effects of heritable 

variation in telomere lengths and different environmental exposures between people.  

 

This is the first study to use quantitative FISH methodology to measure 

chromosome-specific telomere length profiles of trisomic and euploid cells. However, 

this chromosome-specific assay has been previously shown to be a reliable measure of 

telomere length in studies completed on a variety of cell types from different 

individuals (Lansdorp et al., 1996; Martens et al., 1998; Graakjaer et al., 2003). 
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Specifically, we have shown that the overall average of telomere length estimates 

obtained from our adaptation of the quantitative FISH assay correlate with the 

estimates obtained from the “gold standard” TRF assay (Leach et al., 2004).  

 

Of twenty-four subjects evaluated in this current study, we observed a weak 

negative correlation between telomere intensity values and the percentage of trisomic 

cells present in the probands. However, our observation failed to show a significant 

correlation between percentage of trisomy 21 cell and telomere length. This 

observation could be attributable to the small sample size. In addition, given that the 

individuals with mosaicism who were evaluated in this project had a skewing of their 

distribution of trisomic cells toward low levels  (less than 20%), as shown in Figure 

10a,  it is difficult to conclude that dosage of trisomy 21 cells has no impact on 

telomere length.  The lack of a clear effect of the proportion of trisomic cells on 

telomere length could reflect the low percentage of trisomic cells in these individuals, 

who also showed fewer other phenotypic traits seen in people with Down syndrome, 

suggesting they had a lower “threshold” of imbalance.  

 

 We also observed a weak, non-significant negative correlation between 

telomere intensity and age. However, the skewing of the study participants’ age 

toward very young individuals (less than 5 year old) is a possible explanation for this 

observation. Therefore, since most of study subjects were very young, we cannot 

conclude that in general, age has no effect on telomere length in individuals with 

mosaicism for Down syndrome. However, this study is the first to show that the 
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presence of a trisomic complement in young individuals has a minimal impact on 

telomere length. 

 

While no generalized effect of trisomy 21 was observed, differences in overall 

telomere intensity between euploid and trisomic cells “within a person” were detected 

for a subset of people. Approximately 50% of all individuals studied had telomere 

intensity values in euploid cells that were brighter than those in the trisomic cells for 

both arms of their chromosomes. However, significant differences were found in only 

16.7% for short arms and 25% for the long arm. Unexpectedly, the young adults in 

this study (18 to 28 years old) tended to have longer telomeres in their trisomic cells 

longer compared to their euploid cells.  

 

These observations suggest that the telomere length dynamics in young 

individuals having low levels of trisomic cells are not clearly different from those of 

young people having normal chromosomal complements, the latter of whom have 

been shown to have the greatest decrease in their telomere length during the first years 

of life, with little additional attrition occurring until they reach middle age (Zeichner 

et al., 1999). 

 

We found that telomere lengths were not equally distributed among all 

chromosome arms. We also observed that while each person has his/her own specific 

telomere length profile; there was a common profile of telomere length shared 

between different individuals. This observation is also consistent with results of 
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previous reports in people with normal chromosomal complements (Graakjaer et al, 

2003, Mayer et al., 2006).  

 

The finding that both trisomic and euploid cells had strikingly similar 

chromosome-specific telomere length profiles (Table 8 and Figure 13a) implies that: 

(1) dosage of trisomy 21 cells has a minimal impact on telomere lengths in this young 

population; and (2) the impact, if any, tends to be generalized for all chromosomes.  

  

In summary, the results of this study failed to detect a clear influence of a 

trisomy 21 complement in telomere length in young children and young adults. 

However, this conclusion does not seem to apply to older people having trisomy 21. 

Telomeres in euploid and trisomic cells may be subjected to different regulatory 

control processes and such processes may be acquired later in life. In addition, 

sensitivities to mutations that are accumulated over time, which could result in 

different in telomere attrition rates, may be different between euploid and trisomic 

cells. Furthermore, the cell cycle in people having trisomy 21 has been shown to be 

shorter than that of normal people (Leonard and Merz, 1983). Given this observation, 

it is feasible that the telomeric attrition observed in older individuals having Down 

syndrome simply reflects the fact that their cells have completed more rounds of 

replication. The shortening of the cell cycle may also explain, at least in part, the 

premature aging phenotype associated with Down syndrome since trisomic 

individuals complete more cell cycles in a smaller amount of time. Clearly, additional 

studies should be carried out in extended populations with individuals from older 

ages. In addition, it would be very interesting to perform a longitudinal study in this 
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young population, to measure their rate of telomere shortening in trisomic and euploid 

cells compared to that of age-matched controls having a normal complement. 

Collectively, further studies of telomere length variation in people having mosaicism 

could provide insight about the association between telomere attrition and the 

premature aging phenotype in Down syndrome.   
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Chapter 4 

 

Frequency of chromosomal instability and chromosome-specific telomere length 

profiles in individuals with mosaicism for Down syndrome 

 

Introduction 

 

Acquired chromosomal changes have been associated with the development of 

several diseases including, but not limited to, solid tumors [such as malignant glioma 

(Lindström et al., 1991), prostate cancer (Zitzelsberger et al., 1994), renal cell 

carcinoma (Kuroda et al., 2010), malignant melanoma (Balaban et al., 1986)]; 

hematological disorders [such as leukemia and lymphoma (Kaneko et al.,1982, Clare 

et al., 1982, Hagemeijer et al., 1981; Wisniewski and Hirschhorn,1983)]; and 

neurological disorders [such as Alzheimer disease (Migliore et al., 1997; Petrozzi et 

al., 2002; Zekanowski and Wojda, 2009) and Parkinson disease (Petrozzi et al., 2002; 

Migliore et al., 2002; reviewed in Migliore et al., 2011)]. Several investigators have 

shown the frequencies of acquired chromosomal abnormalities involving the sex 

chromosomes to be increased in cultured lymphocytes from healthy older individuals 

(Jacobs et al, 1961; Jacob et al., 1963; Fitzgerald and McEwan, 1977; Martin et al, 

1980; Guttenbach et al, 1995; Richard et al, 1994; Catalan et al, 2000), but there is a 

paucity of information available regarding the frequency of acquired autosomal 

abnormalities and their clinical consequences. Furthermore, while sex chromosome 
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loss has been clearly shown to be correlated with age (Bolognesi et al., 1999; Bonassi 

et al., 2001), the influence of age on acquired autosomal aneuploidy is not well 

established. Evidence for a relationship between aging and an increased frequency of 

acquired chromosomal instability comes from studies of individuals having premature 

aging syndromes, such as Werner syndrome. Cells from individuals having Werner 

syndrome have shown a higher incidence of chromosomal abnormalities than cells 

from normal controls (Crabbe et al., 2007; Ariyoshi et al., 2007). These studies also 

showed a relationship between telomere dysfunction and acquired chromosome 

abnormalities (Crabbe et al., 2007; Ariyoshi et al., 2007), which is a finding that 

supports the previous hypotheses of Barbara McClintock (McClintock, 1941). Aviv 

and Aviv (1998) proposed that erosion of the telomere leads to genomic instability. At 

the chromosomal level, the resultant abnormalities may give rise to chromosome 

fragments lacking a centromere (acentric fragments), which would subsequently not 

be pulled toward the daughter nuclei at the time of nuclear division and would either 

randomly segregate to the nuclei of daughter cells or be excluded into a small 

cytological structure called a micronucleus/micronuclei (MN).  

 

It is well documented  that people with Down syndrome age prematurely, as 

they show signs of degenerative changes in their physical appearance, including 

premature graying and loss of hair, age-related visual and hearing loss, skin atrophy 

and neuropathologic features identical to those observed in people having Alzheimer 

disease (Potter, 1991; Esbensen, 2010). However, little is known about the frequency 

of acquired chromosome abnormalities in people having Down syndrome. 
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In addition to the standard G-band karyotyping, the cytokinesis-blocked 

micronucleus (CBMN) assay is one of the preferred methods for assessing acquired 

DNA damage at the chromosome level (Fenech et al., 2003). It allows for the 

measurement of acquired whole chromosomal loss and/or chromosomal structural 

abnormalities (i.e., acentric fragments; dicentrics, etc.), with the aberrant chromatin 

being excluded into MN. Different mechanisms may be involved in the formation of 

MN, including (but not limited to): 1) misrepaired or unrepaired DNA double-strand 

breaks resulting in acentric chromosome fragments; 2) hypomethylation of 

centromeric and pericentromeric repeat sequences leading to malsegregation of 

chromosomes and subsequent loss; and 3) mutations leading to defects in 

kinetochores or microtubules, defects in mitotic spindle assembly, mitosis check point 

genes; and/or abnormal centrosome amplification. A strong correlation between 

chromosomal aberrations, as assessed using the gold standard of metaphase 

chromosome studies and MN formation has been shown (Ramalho et al., 1988). The 

CBMN assay also allows for measurement of other biological markers which appear 

as distinctive cytological structures, including nuclear buds (NBUD), which are 

thought to be biomarkers of elimination of amplified DNA and/or DNA repair 

complexes, and nucleoplasmic bridges (NPB), which are thought to be biomarkers of 

DNA misrepaired and/or telomere end fusions (Fenech et al., 2011).  

 

NPB are thought to originate primarily from dicentric chromosomes that are 

pulled to opposite poles of the cell during anaphase. In turn, dicentric chromosomes 

are thought to arise from misrepair of chromosome breaks or telomere end fusions. In 

addition, defects in protein complexes involved in sister chromatid separation during 
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anaphase may result in NPB formation. NBUD are thought to occur as a means for 

elimination of amplified DNA, but may also be present as a remnant of NPB breakage 

(Fenech et al., 2011). 

 

MN frequencies have not been extensively studied in individuals with Down 

syndrome (Table 9). Investigators who evaluated buccal cells showed a significant 

increase in MN frequencies in individuals with Down syndrome compared to normal 

healthy controls (Thomas et al., 2008; Ferreira et al., 2009). However, the studies 

completed in lymphocytes were discrepant, with one group of investigators finding a 

decrease in MN frequencies in people having Down syndrome (Scarfi et al., 1990), 

while the other group saw no significant difference in MN frequencies for people with 

Down syndrome compared to age-matched controls (Maluf and Erdtmann, 2001). 

Similar discrepancies have been observed when comparing younger people having 

Down syndrome to older trisomic individuals, with older subjects tending to have a 

higher frequency of spontaneous MN than younger individuals for buccal cells 

(Ferreira et al., 2009), but not lymphocytes. However, MN frequencies in older 

individuals with Down syndrome have been noted to be higher than those observed in 

younger individuals with Down syndrome when their lymphocytes were treated with 

mitomycin-C (MMC), which is a DNA cross-linking agent (Scarfi et al., 1990). In 

addition, individuals with Down syndrome appeared to be more sensitive to MMC, as 

their MMC-induced MN frequency was higher than healthy age-matched controls.
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Table 9: Summary of previous studies assessing MN frequencies in individuals with Down syndrome 

†
range, mean   S.D.,

 *
Overall MN frequency in spontaneous and mitomycin-C (MMC)-induced MN, 

**
 approximated percentage from published histograms

Cell type 

Individuals with Down syndrome Normal healthy controls 

Reference Older group Younger group Older group Younger group 

Age†(years) n MN (%) Age†(years) n MN (%) Age†(years) n MN (%) Age†(years) n MN (%) 

Lymphocytes* 37-55, 44.7±3.8 4 0.86±0.1 9-16, 13.0±1.7 3 0.64±0.06 41-54, 45.8±2 6 1.39±0.11 21-33, 27.6±1.5 8 1.02±0.1 Scarfi et al., 1990 

Lymphocytes - - - 0.7±1.8 30 10.17±3.64 - - - 3.5±4.9 30 9.3±3.1 Maluf et al, 2001 

Buccal cells - - - 5-20, 10.4±5.6 21 0.25** 64-75, 67.1±2.6 31 0.14** 18-26, 22.5±2.2 30 0.03** Thomas et al.,2008 

Buccal cells ≥21,30.8±.4 10 1.00** 

 

<10, 5.5±2.6 

<20, 14.1±3.5 

 

10 

10 

 

0.45** 

0.55** 

≥21, 31.6±8.8 10 0.25** 

 

<10, 5.7±3.2 

<20, 13.9±3 

 

10 

10 

 

0.2** 

0.15** 

Ferreira et al., 2009 
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Clearly, there is a lack of consensus regarding the influence, if any, that a trisomy 

21 complement may have on the propensity for a cell to acquire chromosomal instability. 

Furthermore, it is not known if the premature aging present in people with trisomy 21 is 

associated with an increased frequency of acquired chromosomal abnormalities. One 

potential mitigating factor in the interpretation of the previous data is that the observed 

difference in response between people having Down syndrome could reflect differences 

in their genetic make-up (genes involved in check points, DNA repair, etc), as well as 

differences in environmental exposures. Therefore, in this study, we used the CBMN 

assay in combination with interphase FISH technology to determine the frequency of MN 

in isogenic trisomic compared to euploid cells obtained from older individuals who were 

described as having “mosaicism” for trisomy 21. In addition, to determine if the 

chromosomal content of the MN and NBUDs had a non-random pattern, we used 

Spectral Karyotyping (SKY) technology. To the best of our knowledge, this is the first 

study to determine the chromosomal content of MN (using SKY) from the cells of 

individuals having Down syndrome. 
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Materials and Methods 

 

Study Participants 

Lymphoblast cell lines from 8 individuals with mosaic Down syndrome were 

ascertained through collaboration with Dr. Edmund Jenkins, who has amassed a 

collection of lymphoblast cell lines from individuals who were seen through the New 

York State Developmental Disability Service System (Table 10). Upon receipt in our lab, 

the cells were thawed and established in culture for at least one week to ensure that the 

cells demonstrated growth. 

 

Cell Cultures 

Upon the sample arrival, frozen lymphoblast cell lines were quickly warmed to 

37
o
C, washed twice in sterile 1XPBS and established in culture using  a lymphoblast 

media (RPMI 1640) containing 10% FBS and antibiotic (100 U of penicillin and 100 µg 

of streptomycin). Cell cultures were maintained at 37
o
C, in 5% CO2 until they 

demonstrated adequate growth. At that time the cell solutions were sub-cultured to 

encourage log growth of the cells, with the harvest occurring 24 hours following sub-

culture initiation.  Approximately 30 minutes before harvesting, colcemid was added to 

the cultures to enrich the cultures for cells at metaphase. Chromosomes were harvested 

using standard procedures (Moorhead, et al., 1960). 
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CBMN and FISH Assays 

After successful establishment in culture, cytochalasin B (Cyt-B) was added to a 

final concentration of 3µg/ml, 44 hours after sub-culturing. Cyt-B, which inhibits 

cytokinesis by blocking microfilaments, captures cells at the telophase portion of the cell 

cycle, thereby preventing the cytoplasm from dividing and causing the resultant cell to 

appear binucleated. Twenty-eight hours after the addition of Cyt-B, lymphoblast cultures 

were harvested as described previously (Leach and Jackson-Cook, 2001). Cell pellets 

were dropped onto slides. The slides were then placed on a hot plate at 60C for 1 hour, 

followed by aging at room temperature for 4 days. FISH was performed using probes 

specific for chromosome 21 (test probe) and chromosome 13 (control probe). The test 

probe used was one that is localized to 21q22.13-21q22.2 

(D21S259\D21S341\D21S1432) (Abbott, IL). The control probe was specific for band 

13q14 (RB1 locus) (Abbott, IL) and served as an internal control for hybridization 

efficiency. These probes were hybridized onto cytokinesis-blocked cells to determine 

their trisomic versus euploid status. Briefly, prior to hybridization the slides were 

dehydrated in a cold ethanol (series of 70%, 85% and 100% ethanol). Following 

dehydration, the slides were air-dried. A total of 10μl of the 13/21 probe mixture was 

added to appropriate hybridization areas on the slides. The target chromatin and probes 

were then co-denatured at 73°C for 2 minutes and hybridized in a pre-warmed, 

humidified chamber at 37ºC for 4-16 hours. Upon completion of hybridization, the excess 

and non-specifically bound probes were removed by washing (0.4X SSC/0.3%NP-40 

solution at 72°C for 2 minutes, followed by 2X SSC/0.1% NP-40 wash solution for 1 
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minute). The chromatin in the binucleates was visualized by staining with a 

DAPI/antifade solution (Abbort, IL). Probe signals were visualized using a Zeiss Axiskop 

equipped with single (spectrum Orange, Spectrum Green) and triple band pass filters. For 

each individual, a total of 1000 cells were randomly scored to determine the percentage 

of trisomic cells present. In addition, a total of 500 binucleated cells were randomly 

scored for frequencies of MN, NPB and NBUD in trisomy 21 compared to euploid cells. 

The criteria for recognition of binucleated cells, MN, NPB and NBUD followed the 

guidelines by Fenech, et al. (2003). Representative images were documented using a 

Cytovision Imaging system from Applied Imaging. 

 

SKY analysis of micronuclei 

Slides were aged at room temperature for 4 days prior to the SKY experiment. 

SKY was performed according to the manufacturer’s protocol (Applied Spectral Imaging, 

CA) as adapted by Leach and Jackson-Cook (2001). Briefly, slides were denatured in a 

70% formamide/2XSSC solution (pH 7.0) at 73˚C for 2 minutes. Following denaturation, 

the slides were briefly rinsed in cold water and then dehydrated in an ethanol series (70%, 

85% and 100% for 2 minutes each at room temperature). The SKY probe (Applied 

Spectral Imaging, CA) was denatured at 75˚C for 10 minutes and suppression hybridized 

at 37˚C for 60 minutes to bind repetitive sequences. After suppression hybridization, the 

denatured probe was added to the denatured slides, hybridizion occurring in a humidified 

chamber and at 37˚C for approximately 44 hours. At the completion of hybridization, the 

excess and non-specifically bound probe was removed by washing (using a 
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0.4xSSC/0.3%NP-40 solution at 73˚C for 2 minutes, followed by a one minute wash at 

room temperature in a 2xSSC/0.1%NP-40). Indirectly labeled probes (biotin and 

digoxigenin) were detected using buffers with avidin-Cy5, mouse anti-digoxin and goat 

anti-mouse conjugated to Cy5.5 (provided by manufacturer). All incubations were for 40 

minutes at 37˚C. The binucleates were counterstained with DAPI/antifade (Applied 

Spectral Imaging, CA) to allow for their visualization. A total of 100 MN and their 

contiguous interphase nuclei were identified per study subject using a Zeiss Axioskop 

equipped with a DAPI filter and a custom triple-band pass filter (Chroma, VT). Each MN 

(with adjacent interphase cells) was captured with a SpectraCube system (Applied 

Spectral Imaging, CA). The images were processed using the vendor supplied software 

(Applied Spectral Imaging, CA), which classifies the information obtained by using an 

algorithm that assigns a spectra-specific pseudocolor to all pixels in the image.  

 

Chromosome-Specific Telomere Length Assay 

Slides were aged (either at room temperature for 1-2 weeks or by soaking in 

2xSSC for 10 minutes) prior to the FISH experiment. Metaphase chromosomes were 

hybridized with a telomere-specific FITC-labeled PNA probe following the 

manufacturer’s protocol (DakoCytomation, Denmark). In addition, an FITC-labeled 

probe that is specific for the pericentromeric region of chromosome 2 was simultaneously 

hybridized to the metaphase spreads as a control (and to serve for standardization of 

intensity values from cell to cell) (Mayer et al., 2006). Briefly, slides were fixed in cold 

Carnoy’s fixative for 1 hour. After air-drying, the slides were rinsed with 1XTBS (Tris-
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Buffered Saline, pH 7.5) for 2 minutes, fixed in 3.7% formaldehyde in 1XTBS for 2 

minutes,  and then rinsed (twice in 1XTBS for 5 minutes). The slides were then treated in 

pre-treatment solution, containing proteinase K, for 10 minutes, rinsed (twice in 1xTBS 

for 5 minutes) and dehydrated (using a cold ethanol series [70%, 85% and 100%]). After 

air-drying, the  a cocktail probe mixture (11µl of FITC-labeled telomere specific probe 

and 1 µl of FITC-labeled centromere-2 probe  per subject [a half slide area]) was added 

to each slide and the probe and metaphase spreads co-denatured in a thermocycler at 

80°C for 3 minutes. After hybridization in a dry hybridization chamber at room 

temperature for 2 hours, the excess and unbound probes were removed by rinsing (once 

in manufacturer provided rinse solution at room temperature for 1 minute, followed by 5 

minutes in a manufacturer provided wash solution at 65°C).  Following serial dehydration 

in a cold ethanol series (70%, 85% and 100%), the slides were air-dried, and then 

counterstained with a 5:1 DAPI/propidium iodide solution. 

 

The telomere lengths of each chromosome were assessed using a semi-

quantitative FISH method (CGH software from Applied Imaging Cytovision System) as 

described by Leach et al., (2004). Briefly, three images were captured with a CCD 

camera for each metaphase: (1) a reverse DAPI image, which allows for chromosome 

identification and subsequent karyotyping; (2) a test/ FITC image, showing telomeric and 

centromeric probe signals; and (3) a reference/ propidium iodide image. Fluorescent 

intensities obtained from the “test” and “reference” images were used for calculating the 

ratio profiles of relative telomere intensity for each chromosome arm. Overlapping 
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telomeres or telomeres that were in close proximity were excluded from the analysis. For 

each person the intensity values were averaged over 20 homologs from 10 euploid cells, 

and 20 homologs (30 homologs for chromosome 21) from trisomic cells. 
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Results 

 

 Analyses were completed on lymphoblast samples obtained from 8 individuals 

who were previously categorized (by Jenkins, et al) as having two cell lines (acquired 

mosaicism for trisomy 21 for 5 cases and constitutional mosaicism for 3 cases), as 

summarized in Table 10. Prior to our analyses, the percentages of trisomy 21 cells from 

all lymphoblast cultures were re-evaluated. A total of 5 individuals had trisomic cells 

predominate, while 2 individuals had euploid cells predominate in the current cultures. 

Therefore, chromosomal instability frequencies and telomere length values could be 

analyzed in either trisomic or euploid cells from these individuals, respectively, but not 

both as was initially planned. For one individual both trisomic (10.7%) and euploid 

(89.3%) cells were present. 

 

Cellular distribution of chromosome 21 and 13 probe signals 

The proportion of binucleated cells having MN, NPB, NBUD (Figure 14), as well 

as the total frequency of cytome assay aberrations (MN + NPB + NBUD) was determined 

for each case, along with information regarding their dementia status (Table 10). The 

results of the FISH scoring were used to categorize the binucleates (with or without 

cytome aberrations) into cells having or lacking signals for chromosomes 21 and/or 13. 

These categorizations included cells having numerical abnormalities (i.e., hyperdiploidy 

and hypodiploidy) and unequal segregation (i.e., nondisjunction) of the chromosomes 21 

and 13 into the daughter nuclei and/or cytological structures as summarized in Table 11. 
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Hyperdiploidy of chromosome 21and/or 13 was found to be the most frequent cellular 

alteration. Chromosome 21 and 13 were not frequently excluded in MN. Of the 430 

binucleates scored that had MN, only 11 (2.56%) contained signals having chromatin 

from the region targeted by the probe for chromosome 21, with only 10 MN (2.33%) 

having a signal for the chromosome 13 probe. From these binucleates, “corrective” cells, 

which showed the exclusion of chromosome 21 or 13 into MN (possible trisomy rescue) 

resulting in a balanced complement for the binucleates, were not frequently seen. The 

ratio of the corrective cells to non-corrective cells, the latter of which contained an 

imbalance of chromosome 21 or 13 (either hyperdiploidy or hypodiploidy) was 1 to 2.67 

and 1 to 9 for chromosomes 21 and 13, respectively. Interestingly, 98 of the 430 cells that 

contained MN (23%) had numerical aberrations for chromosomes 13 and/or 21 that were 

not included in the MN. In comparison, only 115 of the 3,536 binucleates without MN 

(3.3%) had acquired numerical aberrations involving chromosomes 13 and/or 21. 

Therefore, even though the cytome aberrations did not reflect all chromosomal anomalies 

that were present in the cells, the observation of a MN (or other cytome structures) was a 

good indicator that the parent cell had chromosomal instability. 
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Table 10: Frequencies of MN, NBUD and NPB observed from CBMN and FISH assays and overall telomere length obtained from 8 individuals 

with mosaicism for Down syndrome, according to their age, gender and dementia status. 

 

MCI = mild cognitive impairment, Tri21= trisomy 21cells, Eup = euploid cells, RFU = relative fluorescent unit, *Total cytome abnormalities determined by the sum of 

MN, NBUD and NPB

Case 

Age at 

sample 

collection 

(years) 

Gender 

% Tri21 

Dementia Status 

% MN % NBUD and NPB 
% Total Cytome 

Abnormalities* 

Mean telomere 

intensity value 

Ascertainment 

Current 

cultures 

Tri 21 Eup Tri 21 Eup Tri 21 Eup Tri 21 Eup 

25 47.7 M 96.0 97.1 No 11.4 

(57/500) 

 1.0 

(5/500) 

 12.4 

(62/500) 

 1.97  

26 57.8 M 92.0 93.4 No 8.4 

(42/500) 

 0.4 

(2/500) 

 8.8 

(44/500) 

 2.30  

27 55.1 F 94.0 98.0 No 7.4 

(37/500) 

 2.2 

(11/500) 

 9.6 

(48/500) 

 1.79  

28 60.4 M 92.0 97.8 No  dementia 

(at age 63) 

13.4 

(67/500) 

 0.6 

(3/500) 

 14.0 

(70/500) 

 1.77  

29 78.1 F 90.0 94.6 Yes 14.0 

(70/500) 

 0.6 

(3/500) 

 14.6 

(73/500) 

 1.59  

30 48.6 M 78.0 1.0 No  7.6 

(38/500) 

 0.6 

(3/500) 

 8.2 

(41/500) 

 2.63 

31 57 F 16.0 1.2 MCI  dementia 

(at age 59) 

 13.2 

(66/500) 

 1.0 

(5/500) 

 14.2 

(71/500) 

 1.37 

32 43.1 F 32 10.7 No 34.0 

(17/50) 

8.0 

(36/450) 

 0.67 

(3/450) 

34.0 

(17/50) 

8.7 

(39/450) 

2.96 3.32 
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Figure 14: Representative images of cytological structures observed in binucleated cells following CBMN and FISH 

assays using probes specific for chromosome 21 (red) and chromosome 13 (green). (a) A binucleated cell with a trisomy 

21 complement that had a MN containing a signal for chromosome 21, suggesting a “trisomy rescue” corrective event occurred 

in the right binucleate to give rise to a euploid cell; (b) a binucleated cell with a trisomy 21 complement that had nuclear buds 

containing chromatin from chromosome 21, suggesting that a corrective event (trisomy corrected to euploid complement) 

occurred for both daughter cells; and (c) a trisomy 21 binucleated cell with a NPB that does not contain chromatin for the 

targeted regions evaluated with these probes.

(a) 

 

(b) (c) 



www.manaraa.com

 

106 
 

Table 11: Segregation of chromosomes 21 and 13 into MN and acquired aneuploidy for chromosomes 21 and 13 in binucleates lacking cytome 

abnormalities 

Case 

BN with MN BN without MN 

MN with 21 MN with 13 MN without 21 or 13 
NL NDJ21 NDJ13 NDJ21,13 Hypo Hyper Multiple 

C NC C NC Typical NDJ21 NDJ13 NDJ21,13 Hypo Hyper Multiple 

25 0 2 0 0 43 0 0 1 5 5 1 421 4 2 0 4 6 1 

26 0 0 0 0 20 5 1 3 2 8 3 440 1 1 0 6 8 0 

27 0 1 0 2 30 0 0 0 0 3 1 426 1 1 1 2 20 1 

28 1 1 1 2 40 1 1 1 7 12 0 419 1 2 0 2 6 0 

29 0 0 0 0 57 1 0 0 1 11 0 404 2 1 0 8 11 1 

30 0 0 0 0 33 1 0 0 1 2 1 446 1 0 0 3 8 1 

31 1 3 0 1 52 2 1 2 0 3 1 423 0 0 0 0 6 0 

32 1 1 0 4 36 0 1 1 2 6 1 441 0 2 0 0 1 0 

Total 3 8 1 9 311 10 4 8 18 50 8 3421 10 9 1 25 66 4 

      

C = Corrective, NC = Non-corrective, NDJ = Nondisjunction, Hypo = Hypodiploidy, Hyper = Hyperdiploidy, Multiple = Hypodiploidy and hyperdiploidy 

MN with 21 

corrective 

MN with 21 

hyperdiploidy 

MN with 21 

hypodiploidy 
MN without 21 

typical 

MN without 21 

with NDJ 21 
MN without 21 

hypodiploidy 

MN without 21 

hyperdiploidy 

MN without 21 

with NDJ 21, 13 

MN without 21 

multiple 
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Telomere length and correlations of telomere length with the frequency of MN, 

NBUD and NPB   

Figure 15 shows representative images of metaphase chromosomes from an 

individual without dementia and an individual with dementia and illustrates the overall 

trend that was observed for telomeres having less intensity (shorter) in individuals with 

dementia as compared to individuals without dementia.  

 

For these analyses, the individuals studied were categorized into 2 groups: non-

demented (n = 5) and demented (n = 3), regardless of their cell types. Age ranges were 

43.1-57.8 years old (median = 48.6) and 57-78.1 (median=60.4) for non-demented and 

demented groups, respectively. The frequency of cytome abnormalities (MN, NBUD, and 

NPB), as well as the overall telomere lengths are shown in Figure 16a and 16b, 

respectively. To compare the frequency of cytome abnormalities and the overall telomere 

length between the non-demented and demented group, the Mann-Whitney U test was 

applied. This statistic involves ranking all the observations, from the smallest to the 

largest values regardless the dementia status. A U statistic was then calculated using the 

following formula: 

U = R - n (n+1), where n = sample size and R = sum of the rank 

This test was performed using the R statistical software program. We found that 

individuals who had dementia had a significantly higher frequency of cytome 

abnormalities (10.0±1.7% vs 14.3±0.3%, p-value = 0.036, Mann-Whitney U test). A 

regression analysis showed that the observed increased frequency of cytome 

2 
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abnormalities significantly co-varied with age (p-value = 0.003), but age effects alone 

were not attributable for the observed cytome frequency differences (p-value = 0.59). 

Telomere intensity scores between cells from individuals with and without dementia were 

also compared. The telomere intensity values of the cells from people with dementia were 

significantly lower than those observed in cells from people without dementia (1.58±0.20 

vs 2.37±0.54; p-value =0.036, Mann-Whitney U test). A regression analysis showed a 

significance co-variance of dementia status and age on telomere intensity values (p-value 

= 0.04), but neither attribute independently accounted for a significant portion of the 

observed variation (age, p-value = 0.5; dementia, p-value = 0.4). We also observed a 

significant negative correlation between telomere length and frequency of MN, NBUD 

and NPB (Spearman correlation, r = - 0.785, p-value = 0.028) over all study participants 

(Figure 17).  
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Figure 15: Representative images of metaphase spreads following the chromosome-specific telomere length assay.  In 

image (a) are metaphase chromosomes from an individual without dementia; with image (b) showing metaphase chromosomes 

from an individual with dementia. Note the overall decreased fluorescent intensity of the metaphase chromosomes from the 

individual with dementia [most telomeres are not readily visible and less intense than the centromeric control probe] as 

compared to the individual without dementia [all telomeres are easily visualized with bright signals that are comparable in 

intensity to the signal of the centromeric control probe].

(a) 

 
(b) 



www.manaraa.com

 

110 
 

 

 

 

 

Figure 16: Frequencies of cytome abnormalities (total MN, NBUD and NPB) and 

overall telomere length (signal intensity). Individuals without dementia (n = 5) and 

individuals with dementia (n = 3) are shown. The data is presented as the mean and 

standard deviation for each group. (a) The frequency of cytome aberrations in individuals 

with dementia was significant higher than those observed in individuals without dementia 

(p-value = 0.036, Mann-Whitney U test). (b) Telomere lengths (signal intensities) in 

individuals with dementia were significant higher than those observed in individuals 

without dementia (p-value = 0.036, Mann-Whitney U test). 
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Figure 17: Relationship between frequency of cytome abnormalities and mean 

telomere length (signal intensity). A significant negative correlation between telomere 

signal intensity (length) and the frequency of cytome abnormalities for individuals 

without dementia (white) and individuals with dementia (black) was detected (Spearman 

correlation, r = - 0.785, p-value = 0.028). An individual who was later diagnosed as 

having dementia is also shown (gray). The data are shown as frequencies/intensities in 

trisomic (triangle) and euploid cells (circle). An individual with mosaicism is represented 

by □ with their values being the average of the two cell populations.  
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Chromosomal contents in MN 

The chromatin present in the MN from the trisomic and euploid binucleates was 

determined using SKY (Figures 18 and 19). Of the total of 777 MN scored, the majority 

(85.71%) contained chromatin from a single chromosome. However, the most frequent 

category of MN that was observed contained chromatin from more than one 

chromosome, with these MN accounting for 12.4±3.6% of the total number of MN 

evaluated from individuals without dementia, and 17.7±0.4% in individuals with 

dementia. The frequencies of autosomal and sex chromosome exclusion into micronuclei 

were not significantly different between the dementia groups. However, a non-random 

pattern of chromosomes present in MN was observed for both groups, with chromatin 

from chromosome 16 being present most frequently and chromatin from chromosome 17 

being present least frequently. A Mann-Whitney U test with Bonferroni correction for 

multiple comparisons was applied for these tests [the p-value was set at < 0.002 (i.e., 

0.05/24)]. The chromosome-specific statistical comparisons between the MN from 

individuals with and without dementia are summarized in Table 12. 
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Figure 18: Representative images of a binucleated cell and micronucleus following the CBMN and SKY assays. (a) A 

reverse DAPI image; (b) spectral image; and (c) classified images. In this cell the chromatin content of the micronucleus 

originated from a Y chromosome. 
 

 

(a) 

 
(b) (c) 

Chromosome Y 



www.manaraa.com

 

114 
 

 

 

 

Figure 19: Frequency of chromatin contents in MN observed from individuals based on their dementia status. The 

proportion of MN containing each of the chromosomes is shown for individuals without dementia (dark gray) and individuals 

with dementia (light gray), pooled over all cell types. The data are shown as the mean (histogram) and standard deviation 

(error bar). The frequencies of MN that contain chromatin from more than one chromosome are shown in the “mix” category.  
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Chromosome-specific telomere length profiles 

Chromosome-specific (averaged over the short arm and long arm) telomere 

lengths (probe signal intensities) were also determined for the study participants with and 

without dementia (Figure 20). Individuals with dementia tended to have shorter telomeres 

than the people without dementia for all chromosomes studied. A Mann-Whitney U test 

with Bonferroni correction for multiple comparisons was applied for these tests [the p-

value was set at < 0.002 (i.e., 0.05/24)]. None of the observed difference values reach 

statistical significance. Chromosomes 16 and 17 were found to have the shortest 

telomeres in both the non-demented and dementia group. In this study, chromosome 18 

was found to have the longest telomeres in both groups. Statistical comparisons between 

the individuals from the non-demented and demented groups are summarized in Table 

12. Individuals without dementia appeared to have nearly the same pattern of 

chromosome-specific telomere length (Figure 20b).  

 

We were able to measure chromosome-specific telomere lengths of euploid 

compared to isogenic trisomic cells in the one individual who had two cell populations 

present in their lymphoblast culture (Figure 21). The telomere intensities tended to be 

shorter for nearly all chromosomes in the trisomic cells. However, none of the telomeric 

values were significantly different between the cell types (Figure 21). 
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Figure 20: Chromosome-specific telomere intensity values in individuals without dementia (dark gray) and with 

dementia (light gray). The data are represented by the median (histogram) and interquatile range (error bar). Note that all 

telomeres of individuals with dementia are shorter compared to those without dementia. (b) Trend lines of the mean of the 

telomere intensity values are shown for each chromosome in the individuals without dementia (dark gray) and with dementia. 

Note the nearly parallel course of lines between individuals without dementia (dark gray) and individuals with dementia (light 

gray). 

0.00

0.50
1.00

1.50
2.00

2.50
3.00
3.50
4.00

M
ea

n
 t

el
o

m
er

e 
le

n
g

th

Chromosome

Chromosome-specific telomere intensity profile

Dementia-

Dementia+

0.00

0.50

1.00

1.50

2.00

2.50

3.00

M
ea

n
 t

el
o

m
er

e 
le

n
g

th

Chromosome

Chromosome-specific telomere intensity profile

Dementia-

Dementia+

(a) 

(b) 



www.manaraa.com

 

117 
 

Table 12: Summary of statistical analysis for MN content and telomere length

Chromosome 

MN Content Telomere Intensities 

Non-demented Demented 
p-value* 

Non-demented Demented 
p-value* 

Mean 

(Dementia -) 

SD Mean 

(Dementia +) 

SD Mean 

(Dementia -) 

SD Mean 

(Dementia +) 

SD 

1 3.4% 3.8% 1.1% 1.1% 0.55 2.18 0.69 1.56 0.30 0.14 
2 1.7% 1.1% 0.8% 0.7% 0.27 2.30 0.67 1.51 0.24 0.14 

3 2.7% 1.6% 4.4% 3.3% 0.39 2.71 0.58 1.74 0.36 0.04 
4 7.5% 1.8% 7.5% 1.2% 1 2.39 0.47 1.40 0.22 0.04 
5 1.8% 1.7% 2.8% 0.9% 0.52 2.25 0.57 1.59 0.23 0.14 
6 1.3% 0.9% 1.4% 1.2% 0.88 2.43 0.64 1.71 0.27 0.07 
7 0.7% 0.6% 1.9% 1.7% 0.38 2.26 0.54 1.46 0.29 0.04 
8 7.1% 2.9% 7.7% 4.3% 1 2.39 0.61 1.56 0.32 0.07 
9 3.3% 1.7% 4.6% 2.2% 0.39 2.30 0.70 1.63 0.56 0.14 

10 2.1% 1.7% 1.8% 1.7% 1 2.40 0.63 1.69 0.19 0.25 
11 6.1% 1.6% 3.8% 0.8% 0.07 2.21 0.42 1.50 0.19 0.04 

12 6.4% 3.1% 6.3% 3.8% 1 2.18 0.52 1.70 0.15 0.4 
13 7.5% 2.4% 4.5% 1.9% 0.14 2.53 0.36 1.65 0.32 0.04 
14 8.4% 1.1% 7.7% 2.0% 0.79 2.70 0.73 1.63 0.37 0.07 
15 2.1% 2.0% 2.1% 0.9% 1 2.65 0.79 1.59 0.46 0.07 
16 11.4% 3.7% 7.9% 4.1% 0.25 1.96 0.40 1.37 0.23 0.07 
17 0.0% 0.0% 0.7% 0.6% 0.11 2.05 0.56 1.31 0.26 0.07 
18 2.7% 2.1% 2.1% 0.9% 1 2.70 0.70 1.86 0.27 0.14 
19 1.4% 1.0% 1.1% 1.2% 0.63 2.17 0.55 1.40 0.22 0.07 
20 4.6% 1.7% 6.4% 2.2% 0.39 2.40 0.61 1.52 0.32 0.07 

21 2.4% 0.9% 1.5% 0.7% 0.25 2.43 0.75 1.53 0.28 0.07 
22 1.0% 0.7% 1.9% 2.3% 0.88 2.26 0.63 1.62 0.40 0.14 
X 2.1% 3.2% 2.5% 2.3% 0.79 2.56 0.64 1.79 0.33 0.04 

mix 12.4% 3.6% 17.7% 0.4% 0.14  
 

 
  

* p-value prior to Bonferroni 
correction 
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Figure 21: Chromosome-specific telomere intensity profiles in the individual with mosaicism for trisomy 21. 

Chromosome-specific telomere length profiles in euploid and trisomic cells obtained from an individual with mosaicism (but 

not dementia) are shown. (a) The data represent mean (histogram) and standard deviation (error bar) values. (b) The 

comparisons of the mean differences, using a paired t-test, showed no significant differences.
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Discussion 

 

In this study, we originally intended to evaluate the frequency of chromosomal 

instability and chromosomal contents of MN between isogenic trisomic and euploid cells 

obtained from individuals with mosaicism for Down syndrome. Of eight individuals who 

were ascertained for having “mosaicism”, we were only able to obtain both trisomic and 

euploid cells for one of these individuals. Of the 8 cases, 5 lymphoblast cultures had 

nearly all trisomic cells. This change in the proportion of cells could be due to selection 

against the euploid cells that happened either at the time that lymphocytes were 

transformed to lymphoblasts (clonal like selection) at the time of freezing/thawing, or 

during the lymphoblast culture maintenance (differential growth). It is likely that these 

individuals had full trisomy 21 with an “acquired” loss of chromosome 21 that occurred 

later in their lives. It has been reported previously that acquired loss of chromosome 21 

happens in elderly people with Down syndrome (Percy et al., 1993; Jenkins et al., 1997). 

For those 2 individuals who had euploid cells that predominated, they are likely to have 

had “constitutional” mosaicism for Down syndrome, with loss of the trisomic line due to 

cell culture selection as described above.  

 

Considering the parallel between the increase in MN frequency and Alzheimer 

type of dementia (Migliore et al., 2011), one could hypothesize that the increase in MN 

frequency could be related to the early development of Alzheimer symptoms in people 

having Down syndrome. In this study, we observed significantly higher frequencies of 
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chromosomal instability in individuals who had dementia, compared to those without 

dementia, which supports the findings of Migliore and colleagues (2011). We also 

observed that individuals who had dementia had significantly shorter telomere than those 

without dementia, which is in agreement with the previous report by Jenkins and 

colleagues (2008) who looked at mean telomere lengths, but not chromosome-specific 

telomere lengths. Given that free radicals have been purported to play a role in the 

shortening of telomeres (Von Zglinicki, 2000) and that the superoxide dismutase-1 (SOD-

1) gene is located on chromosome 21, which encodes an enzyme that is responsible for 

destroying free radicals, the observation of telomere shortening associated with a trisomic 

complement is a bit counter-intuitive. Increased expression of SOD-1 has been 

documented in individuals with Down syndrome. However, H2O2, a product of the 

catalytic reaction by SOD-1, will break down to a hydroxyl radical (OH
-
). OH

–
 is highly 

toxic, which can result in profound cellular damage (reviewed in Capone, 2001). 

Therefore, individuals with Down syndrome are believed to be vulnerable to oxidative 

damage to DNA, including telomeres. The imbalance between oxygen free radical 

production and scavenging leads to cellular dysfunction, which in turn, has been 

postulated to result in elevated genomic instability (Mancuso et al., 2006). In addition, it 

has been reported that individuals with Down syndrome have an accelerated decline in 

DNA repair capacity with age (Raji and Rao, 1998). This could also contribute to 

chromosomal and/or genomic instability in elderly individuals with Down syndrome.  
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In addition to observing generalized trend toward shortened telomeres in the older 

group having dementia, we observed that chromosome 16 had the shortest telomeres for 

both the demented, as well as the non-demented individuals. While the telomere intensity 

values were not significantly different between the two groups, it is of interest to note 

whether there might be genes localized near the heterochromatic telomere whose activity 

could be altered by telomeric attrition. Two such genes were identified to be of interest. 

One of these genes, called partner and localizer for BRCA2 (PALB2), located on 

chromosome band 16p12.2 and encodes a protein that stabilizes and anchors the BRCA2 

protein to structures within the nucleus. Therefore, PALB2 is essential for allowing the 

DNA double-strand break repair functions of BRCA2, which, in turn, prevents cells from 

accumulating genetic damage that can trigger genomic/chromosomal instability 

(http://omim.org/entry/6103555). Given that MN could be formed as a result of 

misrepaired and unrepaired DNA double strand breaks, shortening of the telomere on 

chromosome 16 could be a factor contributing to the higher frequency of MN observed in 

individuals with Down syndrome when compared to age-matched controls having a 

normal complement, the latter of which is a finding reported by Ferreira, et al. (2009). 

The CREB binding protein (CREBBP or CBP) gene is another gene that is located on 

chromosome 16 (band 16p13.3). The CREBBP gene has been shown to have an essential 

role in long term memory formation in mice (Bourtchouladze et al., 2003) 

(http://omim.org/entry/600140). Given that shortening of the heterochromatic telomeric 

region could alter the chromatin conformation of the distal long arm, thereby potentially 

http://omim.org/entry/6103555
http://omim.org/entry/600140
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altering the function of CREBBP gene, this is an interesting gene to consider for future 

studies of the progression of dementia in individuals with Down syndrome.  

 

In this study, we found a significant correlation between telomere shortening and 

increased frequency of MN, NBUD and NPB. It is thought that excessive telomere 

shortening can eventually result in telomere to telomere end fusions and the formation of 

dicentric chromosomes via inappropriate assembly of the telomeric protein structures. 

Using the CBMN and FISH assays, we found that hyperdiploidy, hypodiploidy and NDJ 

were more common alterations than “corrective” changes leading to MN formation for 

chromosome 21 and 13. From MN content analysis using SKY, we found that MN 

containing more than one chromosome (mix) was seen more frequently than MN 

containing a single chromosome. Taken together, one could speculate that telomeric 

shortening is leading to an increased frequency of dicentric chromosome formation in 

older individuals with Down syndrome and that the dicentric chromosomes may 

contribute to the observed increased frequency of chromosomal instability as shown in 

Figure 22. 

 

While we found that the overall telomere lengths (inferred from the reduced 

intensity of signal for the telomeres) of individuals with dementia were significant shorter 

than individuals without dementia, we observed that the telomeres tended to be shorter 

across all chromosomes and the patterns of chromosome-specific telomere length were 

very similar for both groups. However, further studies of more individuals, including 
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individuals with non-mosaic and mosaic Down syndrome, are needed, which ultimately 

may help to identify genomic regions of interest and serve to inform investigators of 

potential candidate genes for future investigations in the etiology of dementia. 
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Figure 22: Diagram showing link between telomere shortening and chromosomal 

instability. Chromosome 21 is shown in red and chromosome 13 is shown in green. The 

left side of the diagram shows the replicated chromosomes’ alignment during metaphase. 

Dicentric chromosomes, which form from end-to-end fusion as a result of telomeric 

shortening, are highlighted with an arrow. The middle of the diagram shows the 

chromosomes following the separation of the sister chromatids during anaphase. As the 

chromosomes are pulled toward the spindle poles, the tension exerted by spindle fibers 

can cause breakage of the dicentric chromosome, which could result in (a) 

nondisjunction; or (b) MN formation following anaphase lagging. The right side of the 

diagram shows patterns that would result from these abnormal segregation events in cells 

evaluated after the CBMN and FISH assays. Note the content of the MN in (b) is 

comprised of a combination of chromatin from chromosomes 21 and 13 (mix). 

 

 

(a) 

Trisomic binucleate 

with nondisjunction 

of chromosome 21 

(b) 

Trisomic binucleate 

with MN containing 

chromosome 21 and 13 
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Chapter 5 

Summary, conclusions, and future directions 

 

A. Array-based technology for mosaicism detection. 

- It is important that geneticists who are interpreting the results of microarray studies gain 

experience in the assessment of cases having mosaicism. Using the default software 

analysis setting for copy number calling alone, is not sufficient to recognize individuals 

with mosaicism involving a minor cell population that is present in less than 30%  of cells 

since the software routinely categorizes log2 ratio changes from 0-30% as copy number 

neutral findings. By expanding our analysis to include an assessment of the smooth signal 

of the log2 ratio, cases having a minor cell population in as few as 15-20% of cells could 

be detected. However, FISH remains the “gold standard” for mosaicism detection. In 

addition, FISH should be considered for confirmation when low level mosaicism is 

suspected and/or to confirm/refute equivocal array-based results. 

 

- Array-based technology has limitations in identifying mosaicism, and is unable to detect 

unbalanced structural chromosome rearrangements, and ploidy changes; however, it 

shows strengths in its ability to identify previously unrecognized chromosomal 

abnormalities. In addition, due to its high resolution compared to the standard G-banding 

analysis, array-based technology allows for refinement of breakpoinst of unbalanced 
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structural chromosome abnormalities. Using the SNP array, the origin of a segregation 

error (meiosis or mitosis, when coupled with an assessment of parental patterns), and 

long contiguous stretches of homozygosity (LCSH), the latter of which may be indicative 

of isodisomic uniparental disomy (UPD) or loss of heterozygosity (LOH), can be 

detected. 

 

- The relative fluorescence intensities obtained from microarray data were positively 

correlated with the percentage of trisomic cells determined by the “gold standard” FISH 

methodology. Thus, for specimens in which mosaicism is detected, array-based 

technology appears to yield reliable estimates of the proportion of cell populations 

present 

  

- A further study including more individuals with various levels of mosaicism for trisomy 

21 syndrome, mosaicism involving other constitutional chromosome abnormalities, and 

multiple clonal cell lines from cancer specimens should be evaluated to assess reliability 

and limitations of this assay by laboratories before it is used in a diagnostic setting (i.e., 

the validation should include mosaic cases) .  

 

B. Chromosome-specific telomere length profiles in euploid and trisomic cells from 

younger individuals with mosaicism for trisomy 21. 
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- A weak, non-significant negative correlation between telomere intensity values and the 

percentage of trisomic cells present in the mosaic probands was observed in this study. 

The lack of a clear effect of the proportion of trisomy cells could be attributable to the 

small sample size, or a skewing of the distribution of trisomic cells in the study 

participants toward low levels (less than 20%). Alternatively, the influence of the 

trisomic imbalance could be limited to the cellular boundaries, with the euploid cells 

showing no influence from the trisomic cells.   

 

- A weak, non-significant negative correlation between telomere intensity and age was 

also observed. The lack of an age effect on telomere intensity values in this young study 

cohort of individuals having mosaicism (majority of participants were less than 5 years 

old) is consistent with expectations from studies of young individuals having euploid 

(normal) chromosomal complements. 

 

- Both trisomic and euploid cells had strikingly similar chromosome-specific telomere 

length profiles, which imply that the trisomy 21 imbalance has a minimal impact on 

telomere lengths in this young population, with any influences that were present tending 

to be generalized for all chromosomes. Although no clear generalized effect of trisomy 

21 was observed in this young study cohort, case by case differences in overall telomere 

intensity between euploid and trisomic cell “within a person” were detected for a subset 

of individuals. 
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- Telomere lengths were not equally distributed among all chromosome arms, with a 

common pattern of telomere length being observed between genetically unrelated 

individuals. In addition, the chromosome-specific telomere length profiles in this cohort 

tended to parallel the profiles that have been reported in normal populations.  

 

- Further studies should be carried out in extended populations with individuals from 

older ages. In addition, a longitudinal study in this young cohort may provide information 

regarding a potential differential rate of telomere shortening in trisomic compared to 

euploid cells. 

 

C. Frequency of chromosomal instability and chromosome-specific telomere length 

profiles in older individuals with Down syndrome with and without dementia. 

 

- Significantly higher frequencies of cytome abnormalities and significantly shorter 

telomere lengths were observed in individuals with Down syndrome who had dementia, 

compared to those without dementia. In addition, a significant correlation between 

telomere shortening and an increased frequency of cytome abnormailties was observed. 

Other cellular alterations, such as hyperdiploidy, hypodiploidy, and nondisjuction 

(imbalances) were more common than “corrective” changes leading to micronuclei (MN) 

formation. Using SKY, MN containing more than one chromosome were noted to arise 

more often than MN containing a single chromosome. Taken together, these findings 

suggest that telomere shortening may lead to an increased frequency of dicentric 
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chromosome formation and that the dicentric interchromosomal abnormalities may be an 

intermediate between the observed increased frequency of hyperdiploidy, hypodiploidy, 

NDJ, and MN containing more than one chromosome. 

 

- Further studies, especially the CBMN in combination of FISH and SKY, should be 

carried out in an extended population of older individuals having mosaicism for trisomy 

21 with and without dementia to further clarify the impact of the trisomic imbalance on 

the acquisition dementia. In addition, investigations in young and older individuals with 

mosaicism for Down syndrome may provide insight about the effects of constitutional 

aneuploidy on the frequency of age-related, acquired chromosomal instability. 
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